Universidad del Bío-Bío. Sistema de Bibliotecas – Chile

UNIVERSIDAD DEL BÍO-BÍO

FACULTAD DE INGENIERÍA DEPTO. INGENIERÍA ELÉCTRICA Y ELECTRÓNICA

DISEÑO DE LÍNEA AÉREA EN 13,2 KV Y ESTUDIO DE PROTECCIONES ELÉCTRICAS DE LÍNEA 2 DE PLANTA CELULOSA RIO BRAVO

Autores:

Patricio Andrés Cabrera Parra Andrés Vásquez Gamonal

SEMINARIO PARA EL TÍTULO DE INGENIERO DE EJECUCION EN ELECTRICIDAD

CONCEPCÍON-CHILE 2015

Universidad del Bío-Bío. Sistema de Bibliotecas – Chile

UNIVERSIDAD DEL BÍO-BÍO

FACULTAD DE INGENIERÍA DEPTO. INGENIERÍA ELÉCTRICA Y ELECTRÓNICA

DISEÑO DE LÍNEA AÉREA EN 13,2 KV Y ESTUDIO DE PROTECCIONES ELÉCTRICAS DE LÍNEA 2 DE PLANTA CELULOSA RIO BRAVO

Autores:

Patricio Andrés Cabrera Parra Andrés Alfredo Vásquez Gamonal

DOCENTES:

DOCENTE PATROCINANTE:Sr. Juan Carlos Delgado NavarroDOCENTE ADJUNTO O CORRECTOR:Sr. Luis Muñoz SáezDOCENTE ADJUNTO O CORRECTOR:Sr. Fabricio Salgado Díaz

Índice

Resumen	4
Capítulo I. Descripción de la red eléctrica Planta Rio Bravo	5
1.1 Aspectos generales	5
1.2 Descripción de equipamiento	7
1.3 Estudio de cargas	9
Capítulo II. Cálculo de línea de transmisión	10
2.1 Planteamiento	11
2.2 Cálculo eléctrico de línea aérea	11
2.3 Cálculo mecánico de línea aérea	16
Capítulo III. Calculo de corto circuito	24
3.1 Planteamiento	25
3.2 Cálculo de parámetros	25
3.3 Cálculo de corto circuito trifásico en barras	32
Capítulo IV. Estudio de coordinación de protecciones	45
4.1 Planteamiento	46
4.2 Análisis de coordinación de protecciones	46
Capitulo V. Comentarios y Conclusiones	68
5.1 Comentarios y Conclusiones	69
Anexo A. Tablas normalizadas	70
Anexo B. Descripción de los equipamientos de Protección en MT y BT	75

Resumen

En el presente informe de seminario se desarrolla el estudio de la segunda línea de producción de la Planta de Celulosa Rio Bravo.

En el capítulo I se realiza una descripción y levantamiento de la red eléctrica de la planta, mediante el cual se obtienen las características y parámetros de los dispositivos del sistema de protección a estudiar.

En el capítulo II se realiza el cálculo eléctrico y mecánico de la línea aérea de transmisión, en el cual se evalúan parámetros y evalúa el cumplimiento de NORMA NSEG 71.

En el capítulo III se desarrolla el cálculo de impedancia y corto circuito de todos los componentes comparando los resultados con el software ETAP en cada una de las barras.

En el capítulo IV se desarrolla el análisis de Coordinación de Protecciones con el software ETAP, el cual entrega una simulación donde se puede analizar la secuencia de operación y las cartas de coordinación de las protecciones, ante una falla trifásica en cada uno de los casos planteados.

En el capítulo V se realizan los comentarios y conclusiones del desarrollo del seminario de título diseño de línea aérea en 13,2 kV y estudio de protecciones eléctricas de línea 2 de planta celulosa rio bravo.

Planteamiento

Con el objetivo de entregar seguridad y estabilidad en los procesos industriales, especialmente a los más críticos, es que se hace imperativo en un sistema encargado de la distribución eléctrica, diseñar un sistema de protecciones funcional y confiable.

Partiendo de esta premisa, se ha tomado para su análisis la línea 2 de la planta de celulosa Rio Bravo. Así, se diseñará una línea aérea de transmisión con cálculo eléctrico y mecánico, además de un estudio y análisis de protecciones; para este estudio se utilizará software de análisis y control para el diseño, simulación y operación de sistemas de potencia eléctricos de distribución.

Objetivos

Determinar los ajustes de las protecciones y modificaciones, que permitan garantizar la selectividad y rapidez de las protecciones eléctricas, ante una falla o sobrecarga de algún equipo.

Universidad del Bío-Bío. Sistema de Bibliotecas – Chile

Capítulo I

Descripción de la Red Eléctrica Planta Rio Bravo

Capítulo I: Descripción de la red eléctrica planta Rio Bravo

1.1 Aspectos Generales

El suministro de la red eléctrica de la planta Rio Bravo proviene de un alimentador de 13.2 kV propiedad de FRONTEL S.A, el que se encarga de alimentar un plan de expansión de la segunda línea de producción que incluirá equipamiento en MT y BT, la que llega a una subestación principal, para luego ser distribuida a cuatro áreas de distintas tensiones de trabajo. En tal sentido, en la figura 1.1 se presenta el diagrama unilineal de la instalación eléctrica de la planta Rio Bravo.

Figura 1.1: Diagrama unilineal de la red eléctrica

1.2 Descripción de equipamiento

1.2.1 Relé de Protección

Con referencia al diagrama unilineal de Figura 1.1, en la Tabla 1.1, se presenta un resumen de las principales características de los componentes de las protecciones existentes en la red eléctrica de M.T.

			Multilin		
Descripción	Tensión kV	Identificación	Modelo	T/C Fase	T/C Residual
Líneaaérea	13,2	R0	SR750	1500/5	-
Barra 2	13,2	R1	SR750	1200/5	50/5
Alimentador AL2	13,2	R2	SR750	600/5	50/5
Alimentador ÁL3	13,2	R3	SR750	300/5	50/5
Alimentador AL4	13,2	R4	SR750	100/5	50/5
Alimentador AL5	13,2	R5	SR750	100/5	50/5
Alimentador AL6	6.3	R6	SR 469	600/5	50/5
Barra 4	2,4	R7	SR750	1500/5	50/5
Motor 700KW	2.4	R8	SR469	300/5	50/5
Motor 575 KW	2.4	R9	SR 469	300/5	50/5
Motor 932 KW	2.4	R10	SR 469	300/5	50/5

Tabla 1.1: Protecciones existentes en la red en M.T

Además, proveniente del bus 3 se alimenta en 6,3 kV un motor sincrónico de 4000 kW, que incorpora un relé Multilin SR 469 para la protección del motor.

Al considerar los equipamientos de protección en baja tensión, con referencia a la Figura 1.1 se identifican dos cargas de potencia constante en 400V que son protegidas por un Master Pac de 4000A con una unidad micrologic 5.0 de marca Schneider Electric.

1.2.2 Transformadores

Con referencia al diagrama unilineal de la Figura 1.1 se realiza un levantamiento de los transformadores de poder y distribución, para esto se contempla emplear como herramienta de apoyo el software ETAP.

Es así que en la Tabla 1.2 se resumen los datos característicos de los transformadores de poder y distribución.

		Tensión kV		I	mpedancia
Descripción	Potencia MVA	Primario	Secundario	Z%	X/R
Transformador 1	7	13,2	6,3	6,5	13,55
Transformador 2	5	13,2	2,4	6,5	12,14
Transformador 3	2	13,2	0,4	5,75	7,098
Transformador 4	2	13,2	0,4	5,75	7,098

En relación a la información de la Tabla 1.2, es necesario destacar que los transformadores tienen conexión al primario en delta y el secundario en estrella aterrizado.

1.2.3 Alimentadores de media tensión

Con respecto al diagrama unilineal de la Figura 1.1, se realiza un levantamiento de las características de los alimentadores en sus tensiones de trabajo. Es así que en la Tabla 1.3 se incluye un resumen de los datos característicos y parámetros asociados.

	Barra Identificación		Calibre		Largo
Descripción	Inicio	Fin	Conductor	Sección [mm ²]	[mts]
AL1	Línea aérea	Barra 2	500 MCM	253,4	65
AL2	Barra 2	T1	300 MCM	152	130
AL3	Barra 2	T2	3/0 AWG	85	196
AL4	Barra 2	T3	3/0 AWG	85	125
AL5	Barra 2	T4	2/0 AWG	67,4	18
AL6	T1	MS	500 MCM	253,4	65

Tabla 1.3: Datos de Alimentadores

Cabe destacar que en el capítulo II, se presenta el diseño de la línea aérea que aparece en el diagrama unilineal de la Figura 1.1.

1.2.4 Motores

Considerando las máquinas eléctricas del diagrama unilineal de la Figura 1.1, en la Tabla 1.4, se resumen las características de cada motor. En tal sentido, los parámetros característicos, se han obtenido de la base de datos del software ETAP.

Descripción	Potencia kW	Tensión kV	Reactancia Xd" (%)	X/R	Factor de Potencia
Motor Sincrónico	4000	6,3	15,39	35	0,931
Motor de inducción 1	700	2,4	18,462	23,665	0,924
Motor de inducción 2	575	2,4	18,462	22,127	0,923
Motor de inducción 3	932	2,4	15,385	26,224	0,925

Tabla 1.4:	Datos	de	Motores	de M	T.
1 4014 1.1.	Duiob	ue	101010105	uc 111	• •

1.3 Estudio de cargas

Con referencia al diagrama unilineal de la Figura 1.1 se requirieron de energía eléctrica de motores y cargas con potencia constante.

Así, al considerar la potencia nominal de los motores con su factor de potencia, en la Tabla 1.5, se resumen las demandas de cada una de los equipos de la red eléctrica de la planta Rio Bravo.

Descripción	Potencia Activa kW	FP	Potencia Reactiva kVAR
Motor MS	4000	0.93	1580
Motor MI1	700	0.924	290
Motor MI2	575	0.923	240
Motor MI3	932	0.925	383
Carga 1	1400	0.95	460
Carga 2	1420	0.95	467
Total	9027		3420

Tabla 1.5: Demanda de potencia

Así, al considerar la potencia total, se establece una demanda de 9027 kW y 3420 kVAR con un factor de potencia de 0,935ind.

Cabe destacar que la información de demanda, será de especial interés en el cálculo de regulación de tensión descrito en el capítulo II.

Universidad del Bío-Bío. Sistema de Bibliotecas – Chile

Capítulo II

Cálculo de línea de transmisión

Capítulo II: Cálculo de línea de transmisión

2.1 Planteamiento

En el presente capítulo se realiza el diseño eléctrico y mecánico de la línea aérea de circuito simple horizontal de conductores de cobre.

2.2 Calculo eléctrico de línea aérea

Para el cálculo eléctrico se contempla evaluar la capacidad térmica, la estimación de parámetros y la regulación de tensión para cumplir la NORMA NSEG 71

2.2.1 Capacidad nominal

La capacidad nominal que debe transportar la LT está definida por la demanda total de la planta, incluyendo un factor de expansión esperado del 10% (aspecto a proporcionar por la planta). Así, la potencia de diseño es:

 $S_L = 1.1x9027 \text{ KW} + j3420 \text{ KVAR} = 9930 \text{KW} + 3762 \text{KVAR} = 10620 \text{L}20,75 \text{kVA}$

Luego la corriente nominal queda definida por:

$$I_{\text{NOMINAL}} = \frac{10620 * 10^6}{\sqrt{3} * 13.2 * 10^3} = 464.5 \text{ A}$$

En consecuencia, la capacidad térmica del conductor seleccionado deberá ser mayor a 464,5A.

2.2.2 Topología de la LT

Considerando la NORMA NSEG 5, art 106 Tabla N°4, la distancia mínima entre los conductores para una flecha de 1metro a 30°C y sin sobrecarga, viene dada por:

$$D_{MIN} = 0.36\sqrt{F} + \frac{KV}{130} + 0.5C = 0.36 + \frac{13.2}{130} = 0.462 \text{ MT}$$

Donde:

 D_{MIN} : Distancia mínima entre conductores para una flecha de un metro F: es la flecha aparente a 30°C

kV: tensión nominal entre conductores

C: longitud en metros de cadena de aislación en suspensión, ya que se considera aisladores rígidos es igual a 0.

Por otro lado, al considerar una flecha de 4,5 metros, la distancia mínima entre conductores será:

$$D_{MIN} = 0.36\sqrt{F} + \frac{kV}{130} = 0.36\sqrt{4.5} + \frac{13.2}{130} = 0.865 \text{ mts}$$

Así, como muestra la Figura 2.1, considerando un valor intermedio se contempla evaluar la topología de la línea de transmisión con una distancia entre conductores de 0,664mts equivalente a una flecha esperada no superior a 2,437mts, aspecto que será validado mediante el cálculo mecánico.

Figura 2.1: Disposición de líneas aéreas

Por otro lado, para determinar los parámetros por fase de la línea de transmisión, se asume transposición de la línea, con lo cual la distancia de separación de una configuración equilátera equivalente resulta ser:

 $DMG = \sqrt[3]{0,664 * 0,664 * 1,328} = 0,837Mts = 2,746$ pies

Así, como muestra la Figura 2.2, para el cálculo de parámetros se contempla una separación de conductores en configuración equilátera de 0,837mts, equivalente a 2,746pies.

Figura 2.2:Disposición de líneas aéreas equiláteras

2.2.3 Selección del conductor

Considerando un conductor de cobre duro de 97,3% de conductividad, se contempla seleccionar el tamaño del conductor según la capacidad térmica requerida con la restricción que debe asegurar una tensión en el receptor comprendida en un 5%, esto es, la tensión en el receptor no debe ser inferior a 12,54kV, ni superior a 13,86 kV.

Así, con referencia a tablas normalizadas de conductores de líneas aéreas según Tablas A.1 y A.2 de Anexo A, para una capacidad térmica superior a 464,6A, se selecciona un conductor 4/0 AWG de 19 hebras.

En tal sentido, los parámetros característicos de esta línea son:

Capacidad térmica: 480A Radio medio geométrico: 0,01668pie Resistencia CA: 0.303 Ω /milla a 50Hz y 50°C Reactancia inductiva Xa: 0.414 Ω /milla a 1 pie de separación Reactancia inductiva Xd: 0.1023 Ω /milla a 2,746 pie de separación

Luego, la impedancia de la línea viene dada por:

 $Z_L: [R_c + j(X_a + X_d)] * l$

Donde:

Z_L: Impedancia de línea
X_a: Reactancia a un pie de separación
X_d: Reactancia inductiva a 2,746 pies de separación
l: Longitud de conductor

$$Z_{L} = [0,303 + j(0,414 + 0,1023)] * \frac{3,2}{1,609} = 0,602 + j1,027 \Omega$$

Cabe destacar que empleando expresiones numéricas, la reactancia de la línea también puede calcularse como:

$$X_{L} = 0.0628 * LN \left(\frac{DMG}{RMG}\right) * l = 0.0628 * LN \left(\frac{2.746}{0.01668}\right) * 3.2 = 1.026 \Omega$$

Así, al evaluar la caída de tensión en el receptor se tiene:

$$(13,2 - V_R) = R * P + X * Q = 0,602 * 9,027 + 1,027 * 3,420 = 8,95$$

Desarrollando:

$$V_R^2 - 13,2 V_R + 9,87 = 0 \Rightarrow VR = \frac{13,2 + \sqrt{13,2^2 - 4 * 8,95}}{2} = 12,48 \text{ kV}$$

Donde:

V_R: Voltaje receptor R: Resistencia de conductor P: Potencia Activa X: Reactancia de conductor Q: Potencia Reactiva

Puesto que, la tensión esperada es menor al límite inferior de 12,54 kV el conductor de calibre 4/0, se descarta. Así, es necesario evaluar con un conductor de calibre superior escogiendo en este caso un conductor de 250 MCM, 19 hebras.

En este caso los parámetros característicos de la línea son:

Capacidad térmica: 540A Radio medio geométrico: 0,01813pie Resistencia CA: 0.257 Ω /milla a 50Hz y 50°C Reactancia inductiva:0.406 Ω /milla a 1 pie de separación Reactancia inductiva:0.1023 Ω /milla a 2,746 pie de separación Luego, la impedancia de la línea viene dada por:

$$Z_{L} = [0,257 + j(0,406 + 0,1023)] * \frac{3,2}{1,609} = 0,511 + j1,011 \Omega$$

Cabe destacar que empleando expresiones numéricas, la reactancia de la línea también puede calcularse como:

$$X_{L} = 0.0628 * LN \left(\frac{DMG}{RMG}\right) * l = 0.0628 * LN \left(\frac{2.746}{0.01813}\right) * 3.2 = 1.01 \Omega$$

Así, al evaluar la caída de tensión en el receptor se tiene:

$$(13,2 - V_R) = R * P + X * Q = 0,511 * 9,027 + 1,011 * 3,420 = 8,07$$

Desarrollando:

$$V_R^2 - 13,2V_R + 8,904 = 0 \Rightarrow V_R = \frac{13,2 + \sqrt{13,2^2 - 4 * 8,07}}{2} = 12,55 \text{ kV}$$

Si bien, en esta caso se satisface el nivel mínimo de voltaje, dado que está muy cerca del límite inferior, se analiza el conductor de sección inmediatamente superior, esto es, un calibre de 300 MCM 19 hebras.

En este caso los parámetros característicos de la línea son:

Capacidad térmica: 610A Radio medio geométrico: 0,01987pie Resistencia CA: 0.214 Ω /milla a 50Hz y 50°C Reactancia inductiva:0.396 Ω /milla a 1 pie de separación Reactancia inductiva:0.1023 Ω /milla a 2,746 pie de separación

Luego, la impedancia de la línea viene dada por:

$$Z_{L} = [0,214 + j(0,396 + 0,1023)] * \frac{3,2}{1,609} = 0,426 + j0,991 \Omega$$

Cabe destacar que empleando expresiones numéricas, la reactancia de la línea también pude calcularse como:

$$X_{L} = 0.0628 * LN \left(\frac{DMG}{RMG}\right) * l = 0.0628 * LN \left(\frac{2.746}{0.01987}\right) * 3.2 = 0.991 \Omega$$

Así, al evaluar la caída de tensión en el receptor se tiene:

$$(13,2 - V_R) = R * P + X * Q = 0,426 * 9,924 + 0,991 * 3,791 = 7,98$$

Desarrollando:

$$V_R^2 - 13,2 V_R + 7,98 = 0$$
; luego $V_R = \frac{13,2 + \sqrt{13,2^2 - 4 * 7,98}}{2} = 12,56 \text{ kV}$

Por tanto, dado que la NORMA NSEG 71 solicita una regulación del 7,5 % y la empresa solicita una regulación del 5 % el conductor de calibre 300 MCM cumple con lo solicitado. En consecuencia se establece una línea aérea simple, con conductores de sección de 300 MCM y 19 Hebras, en disposición horizontal con una separación de conductores de 0,664mts.

Por otro lado, la altura mínima de conductor según NSEG 71 para categoría B es de 6 MTS. Es así, que al considerar una flecha máxima de 2,437mts la altura de las líneas en apoyo, será como mínimo de 8,437mts.

2.3 Cálculo mecánico de línea aérea

2.3.1 Análisis exacto

Para la verificación de las solicitudes mecánicas de conductores y soportes de la línea aérea, se considerará según NSEG71 la zona 1.

Así, las condiciones más desfavorables de sobrecargas y temperaturas vienen dadas por:

- Presión del viento: $20 \text{kg/m}^2 * \left\{ \frac{1000 \text{gr}}{1 \text{kg}} * \frac{1 \text{m}^2}{100^2 \text{cm}^2} \right\} = 2 \text{gr/cm}^2$
- Temperatura ambiente: -10 °C
- Espesor radial de hielo: 10 mm

Para las condiciones más desfavorables, la tensión mecánica máxima (Fa) que se admitirá en el conductor no debe superar el 50% de la tensión de ruptura del conductor. así, para conductor 300 MCM, 19 hebras,

Fa.
$$\leq 0.5 * 13510$$
lb $= \frac{76551}{2,2046} = 3064$,

Figura 2.3: Catenaria

Considerando un conductor de peso uniforme sujeto entre dos apoyos de igual altura (ptos a y b) la tensión en el conductor dependerá del peso del conductor, longitud del vano, de la temperatura y condiciones ambientales.

Un primer paso es determinar la fuerza resultante que actúa sobre el conductor, considerando el peso del conductor (Uc), presión (carga del viento (h) y peso del hielo (Fv), así:

 $g=\sqrt{h^2+(Fv+Uc)^2}$ kg/mt

En tal sentido, la componente horizontal del viento Pv resulta ser Pv=0,01p * D (kg/mt)donde h es la presión del viento (gr/cm²) y D el diámetro del conductor en (mm).

Considerando el conductor 300 MCM 19 hebras , que posee un diámetro de 15,98 mm se tiene:

 $h=0,01*2(gr/cm^2)*15,98(mm)=0,319(\frac{kg}{mt})$

El peso del hielo por unidad de longitud queda definido por:

Fv = 7,17 * 10⁻⁴ * [(D + 2r)² – D²]
Fv = 7,17 * 10⁻⁴ * [(15,98 + 2 * 10)² – 15,98²] = 0,745
$$\frac{\text{kg}}{\text{mt}}$$

Por otro lado, considerando el peso del conductor, se tiene:

Uc= 4891* lb/milla* $\frac{1}{2,2046}$ * $\frac{1milla}{1609mt}$ = 1,379 $\frac{kg}{mt}$

Luego:

$$g = \sqrt{0,319^2 + (0,745 + 1,379)^2} = 2,148 \frac{\text{kg}}{\text{mt}}$$

Para evaluar las relaciones entre magnitudes mecánicas y distancias en una línea aérea, se analiza la curva del conductor suspendido entre extremos a la misma altura.-

Figura 2.4: Catenaria

Donde:

 V_c : Peso propio del conductor V_h : Peso propio del hielo V = Vc + VhH: Fuerza horizontal ejercida por la presión del viento [kg/m] g: Fuerza resultante [kg/m], donde: $g^2 = V^2 * h^2$ L: Semi-luz [m] F_a : Fuerza ejercida sobre el conductor en los apoyos [kg]

Considerando que:

h = 0.01 * p * D [kg/m]

Donde p, es la presión del viento en [gr/cm²] y D el diámetro del conductor en [mm]

$$V_{\rm h} = 0.000717 * \{(D + 2r)^2 - D^2\}$$

Donde r, es espesor del hielo en [mm]

Determinando por ecuación matemática de la curva que describe un elemento flexible, suspendido sobre los apoyos de la misma altura, a partir de:

 $Tg\phi = \frac{dy}{dx} = \frac{gl_x}{H}$ y reemplazando la relación de lx, se obtiene:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{g}}{\mathrm{H}} = \int \sqrt{1 + (\frac{\mathrm{d}y}{\mathrm{d}x})^2 \,\Delta \mathrm{x}}$$

Resolviendo esta ecuación, se obtiene:

$$y = \frac{H}{g} \cosh\left(\frac{gx}{H} - 1\right)$$
 Ecuación de la catenaria

de esta ecuación se deduce la siguientes relaciones:

a.- Flecha $f = \frac{H}{g} \left[\cosh\left(\frac{gL}{H}\right) - 1 \right]$ b.- Fuerza ejercida sobre el conductor en cualquier punto $Fx = H \cosh\left(\frac{gx}{H}\right)$ c.- Fuerza ejercida sobre el conductor en los apoyos $Fa = H \cosh\left(\frac{gl}{H}\right)$ d.- Largo del conductor $l_{total} = \frac{2H}{G} \sinh\left(\frac{Gl}{H}\right)$

Para resolver un problema, como por ejemplo, relacionar dos condiciones atmosféricas, se debe resolver un sistema de dos ecuaciones, con dos incógnitas.

2.3.2 Cálculo aproximado

Este método se basa en resolver el sistema de dos ecuaciones, mediante gráficos; las dos ecuaciones son:

a.) $\frac{F}{Sg} = f\left(\frac{1}{S}\right)$ b.) $\frac{F}{Sg} = f\left(\frac{f}{S}\right)$ El segundo método es de aproximación que se obtiene al reemplazar el "cosh", por los dos primeros términos de su correspondiente serie obteniendo las siguientes relaciones;

 $f = \frac{1}{2} * \frac{GL^2}{H}$

 $l_{total} = 2L + \frac{4}{3} * \frac{f^2}{L}$

a-. Flecha

b.- Largo total

En forma complementaria a las expresiones descritas anteriormente, también es posible definir un cálculo unitario, en donde las magnitudes de interés de la catenaria se dividen por el vano S.

A continuación se desarrolla un ejemplo:

Es así, que se establecen valores tabulados para el factor de tensión horizontal, factor de tensión, flecha unitaria y longitud unitaria de la línea.

En primer término se establecen los datos requeridos:

A continuación en Tabla 2.1 se entregan datos del conductor

DATOS CONDUCTOR	UNIDAD	
Tipo de conductor a utilizar	300	[MCM]
Sección	152	[mm ²]
Diámetro (mm)	15,98	[mm]
Radio Medio Geométrico (cm)	0,606	[cm]
Peso aproximado (Kg/m)	1,379	[Kg/m]
Carga de ruptura (Kg)	6128	[Kg]
Resistencia (ohm/Km) AC a 50°C	0,344	[Ω/Km
Módulo de elasticidad (Kg/mm ²)	11939	[Kg/mm ²]
Coeficiente de dilatación lineal (1/°C)	1,69*10-5	[1/°C]
Presión del viento (gr/cm ²)	2	[gr/cm ²]
Temperatura zona 1 (°C)	-10	[°C]
Espesor del hielo a -10 °C (mm)	1	[mm]
Longitud del vano (m)	200	[mts]

Tabla 2.1: Datos de conductor

Una vez determinada la carga total (g) se puede obtener el factor de carga (Y)

$$Y = \frac{Fa}{g} = \frac{3064}{2.1479} = 1426.5096$$

Siendo:

Fa: El 50% de la tensión de ruptura

g : Fuerza resultante

Es así, que:

 $\frac{Y}{s} = \frac{16.5096}{200} = 7.1325$

Interpolando desde Tabla A.3 valor unitario (ver Anexo A) para obtener l/s

Así, en Tabla 2.2 se resumen resultados de interpolación de Tabla A.3 (ver Anexo A)

l/s	y/s
1.000817	7.1604
1.00082411	7.1325
1.000938	6.6854

Tabla 2.2: Valor unitario

Así, el largo del conductor viene dado por:

 $\frac{6.6854 - 7.1604}{7.325 - 7.1604} = \frac{1.000938 - 1.000817}{x - 1.000817} = 1.00082411$

Por lo tanto:

$$x = \frac{l}{s} = 1.00082411$$

Por otro lado, obtenido los datos de relación con respecto al vano, es necesario proponer una segunda condición con respecto al día de instalación, el que será de 20 °C y sin viento.

Así, queda definida por:

 $g = \sqrt{0 + (1.379 + 0)^2} = 1.379 \text{ Kg/m}$

a) Para comenzar será necesario eliminar el efecto de la carga sobre el conductor.

$$\frac{la}{S} = \frac{l/s}{1 + \frac{Fa}{\alpha * M}} = \frac{1.00082411}{1 + \frac{3064}{152 * 11939}} = 0.9991 \quad a - 10 \text{ °C y sin carga}$$

b) Ahora, se deberá llevar l/s desde -10 °C a 20 °C y sin carga.

$$\frac{lb}{s} = \frac{la}{s} * (1 + \alpha * \Delta t)$$
$$\frac{lb}{s} = 0.9991 * (1 + 1.69 * 10^{-5} * 30) = 0.999601$$
 20°C Primer punto de la recta

c) Ver efecto de la carga en conductor a 20°C, para obtener el segundo punto, sin viento, sólo peso del conductor.

g = 1.379 Kg/m; f/sg = 5

f = 5 * 200 * 1.379 = 1379 Kg

$$\frac{\text{Lc}}{\text{s}} = 0.999601 * \left(1 + \frac{1379}{152 * 11939}\right) = 1.00036 \text{ segundo punto a } 20^{\circ}\text{C y con carga}$$

De la figura de curvas se obtiene:

Figura 2.5: Relación entre flecha y largo unitario

Así, de la figura se obtiene:

$$\frac{F}{Sg}$$
 = 8,4 → F = 8,4 * 200 * 1,379 =2316,72 (kg)
 $\frac{f}{s}$ = 0,015 → f = 0,015 * 200 = 3 (m)a 20 °C

Por último, obtenidos estos datos, se puede determinar que el largo del conductor en el día de la instalación es:

$$\frac{\text{Lc}}{\text{s}} = 0.999601 * \left(1 + \frac{2316,72}{152 * 11939}\right) = 1,00087$$

Por lo tanto

L = 1,00087 * 200 = 200,175 (m)

Universidad del Bío-Bío. Sistema de Bibliotecas – Chile

Capítulo III

Cálculo de corto circuitos

Capítulo III: Cálculo de corto circuitos

3.1 Planteamiento

En esta capítulo se realizan los cálculos de corto circuito trifásico de la red al respecto se determinan los parámetros de los componentes del SEP, esto es, empalme, transformadores, líneas de transmisión, alimentadores y motores eléctricos, empleando información de tablas normalizadas, de proveedores e información disponible de la base de datos del programa ETAP.

3.2 Cálculo de parámetros

Para los cálculos de los parámetros la red eléctrica se contempla emplear cálculos en por unidad, empleando para ello una potencia base de 100 MVA.

3.2.1 Cálculo de parámetros del SEP

Considerando la información proporcionada por la empresa, en la Tabla 3.1 se presentan los datos característicos del empalme.

Descripción	Designación	Tensión kV	SCC 3ø MVA	X/R
SEP	BUS 0	13,2	480	8

Tabla 3.1: Datos característicos del Empalme

Considerando la potencia de cortocircuito trifásica, la corriente viene dada por:

$$ICC_{3\phi} = \frac{scc_{3\phi}}{\sqrt{3} * V} = \frac{480 \text{ MVA}}{\sqrt{3} * 13,2 \text{ kV}} = 20,995 \text{ kA}$$

Determinada la corriente de corto circuito, la resistencia equivalente del empalme resulta ser:

$$Rs = \frac{V_L}{\sqrt{3} * ICC_{3\phi} * \sqrt{1 + (X/R)^2_{3\phi}}} = \frac{13.2 * 10^3}{\sqrt{3} * 20.995 kA * \sqrt{1 + 8^2_{3\phi}}} = 0.045 \Omega$$

Así, la reactancia equivalente del empalme es:

Xs = 8 veces $Rs = 0,352 \Omega$

Luego la impedancia resulta ser:

 $Z_{sep} = 0.045 + J0.352 = 0.355 \bot 82.87^{\circ}\Omega$

Considerando la potencia base de 100 MVA y voltaje base de 13,2 kV , la impedancia base resulta ser: $1,742\Omega$. Así, la impedancia en por unidad del empalme resulta ser:

$$Z_{sep} = \frac{Z_{REAL}}{Z_{BASE}} = \frac{0,355}{1,742} = 0,204 L 82,87^{\circ}(pu)$$

3.2.2 Cálculo de parámetros de Transformadores

Considerando los parámetros descritos de los transformadores en la Tabla 1.2, la impedancia en por unidad en base propia del transformador 1 resulta ser:

$$Z_{\text{Trafo 1}} = 0,065 \sqcup 85,779^{\circ} = 0,00478 + j0,06482(pu)$$

Al considerar la potencia base de 100 MVA, la impedancia en por unidad viene dada por:

$$Z_{\text{Trafo 1}} = 0,065 \bot 85,78^{\circ} * \frac{100}{7} * \left(\frac{13,2}{13,2}\right)^2 = 0,929 \bot 85,78^{\circ}(\text{pu})$$

Al considerar los parámetros del transformador 2 se tiene:

 $Z_{Trafo 2} = 0,065 \bot 85,29^{\circ} = 0,00534 + j0,06478(pu)$

Así, impedancia en por unidad en base de 100 MVA viene dada por:

$$Z_{\text{Trafo 2}} = 0,065 \sqcup 85,29^{\circ} * \frac{100}{5} * \left(\frac{13,2}{13,2}\right)^2 = 1,3 \sqcup 85,29^{\circ}(\text{pu})$$

Respecto del transformador 3, la impedancia en por unidad en base propia, resulta ser:

 $Z_{Trafo 3} = 0,0575 \bot 81,98^{\circ} = 0,008 + j0,0569(pu)$

Luego, la impedancia en por unidad en base de 100 MVA viene dada por:

$$Z_{\text{Trafo 3}} = 0,0575 \bot 81,98^{\circ} * \frac{100}{2} * \left(\frac{13,2}{13,2}\right)^2 = 2,875 \bot 81,98^{\circ}(\text{pu})$$

Finalmente, la impedancia en por unidad en base propia del transformador 4 resulta ser:

$$Z_{\text{Trafo 4}} = 0,0575 \bot 81,98^{\circ} = 0,008 + j0,0569(\text{pu})$$

Así, la impedancia en por unidad en base de 100 MVA viene dada por:

$$Z_{\text{Trafo 4}} = 0,0575 \bot 81,98^{\circ} * \frac{100}{2} * \left(\frac{13,2}{13,2}\right)^2 = 2,875 \bot 81,98^{\circ}(\text{pu})$$

3.2.3 Cálculo de parámetros de la línea de transmisión

Al considerar el cálculo descrito en el capítulo II, se establece que la impedancia de la línea aérea resulta ser:

$$Z_{\text{linea}} = 0.426 + J0.991\Omega = 1.079 \bot 66.739^{\circ}\Omega$$

Así, considerando la impedancia base de 1,742 (Ω), la impedancia de la línea en pu viene dada por:

$$Z_{\text{linea}} = \frac{Z_{\text{real}}}{Z_{\text{base}}} = \frac{1,079 \, \lfloor 66,74^{\circ}}{1,742} = 0,619 \, \lfloor 66,74^{\circ}(\text{pu})$$

3.2.4 Cálculo de parámetros de Alimentadores de media tensión

Para el cálculo de los alimentadores en MT se contempla emplear la información técnica proporcionada por el fabricante MADECO (ver anexo A Tabla A.4).

Dado que este alimentador AL1 presenta tres conductores por fase, la resistencia total es un tercio del valor de una línea, ya que se considera los conductores en paralelo, dando como resultado:

 $R = 0,0015 (\Omega)$

Por otro lado, la reactancia inductiva de tabla, resulta ser $0,122 \left(\frac{\Omega}{km}\right)$ y mediante el presenta cálculo de radio medio geométrico (RMG), se obtendrá el valor de la reactancia total del alimentador AL1, el cual posee 3 conductores por fase.

Reactancia del conductor 500 MCM según tabla normalizada.

$$X=0,122\left(\frac{\Omega}{km}\right)$$

Diámetro externo del conductor (d): 37,40 mm

Radio medio geométrico del conductor: 7,92 mm

k = constante.

$$X = k \times \log \frac{d}{RMG_{H}}$$
 0,122 = $k \log \frac{37,40 \text{ mm}}{7,92 \text{ mm}}$

k = 0,181

Luego, el radio medio geométrico del conductor:

RMG_H: Radio medio geometrico de la hebra

D: Distancia entre conductores.

$$RMG = \sqrt[3]{RMG_H * d^2}$$

 $RMG = \sqrt[3]{7,92 * 37,40^2} = 22,29 \text{ mm}$

$$X = 0,181 \log \frac{37,40(\text{mm})}{17,2(\text{mm})} = 0,0041 \frac{\Omega}{\text{km}}$$

Por otro lado, el largo del alimentador es 65 metros.

$$X_{\rm T} = 0.041 \left(\frac{\Omega}{\rm km}\right) * 0.065 (\rm km) = 0.0027 (\Omega)$$

Luego, la impedancia en Ohms es:

$$Z_{AL1} = 0,00154 + j0,00264 = 0,0031 \bot 59,88^{\circ}\Omega$$

Dado que el alimentador esta en 13.2 kV, la impedancia base resulta ser 1,742 (Ω), y por tanto la impedancia por unidad viene dada por:

$$Z_{AL1} = \frac{Z_{real}}{Z_{base}} = \frac{0,0031 \bot 59,88^{\circ}}{1,742} = 0,0018 \bot 59,88^{\circ}(pu)$$

Así, se presenta ejemplo de cálculo de parámetros de alimentadores de media tensión

En relación con el alimentador AL2, la resistencia del conductor queda definida por:

$$R = \frac{\phi * L}{S} = R = \frac{0.018 \left[\frac{\Omega * mm^2}{m}\right] * 130}{152 mm^2} = 0.0154\Omega$$

Por otro lado, empleando Tablas normalizadas (ver anexo A); la reactancia para un conductor de 152mm² resulta ser 0,132 Ω /km. Así, la impedancia del alimentador viene dada por:

$$Z_{AL2} = 0.0154 + j \ 0.0172 = 0.023 \sqcup 48.16^{\circ}\Omega$$

Considerando la impedancia base en 13,2 kV de 1,742(Ω) la impedancia en pu del alimentador AL2 queda definida por:

$$Z_{AL2} = \frac{Z_{real}}{Z_{base}} = \frac{0,023 \sqcup 48,16^{\circ}}{1,742} = 0,013 \sqcup 48,16^{\circ}(pu)$$

Así en Tabla 3.2 se resumen los valores de impedancia de los demás conductores de media tensión.

3.2.5 Cálculo de parámetros de motores

Al considerar los parámetros de los motores de MT, se consideran valores de reactancia X"d y la relación X/R. En tal sentido, destacar que los parámetros de los motores se han obtenido empleando la base de datos del software ETAP 6.0. Así, considerando los datos de Tabla 1.4, la reactancia del motor sincrónico resulta ser:

Xd'' = 0,1539(pu)

Por otro lado, considerando la relación x/r de 35 se tiene :

$$\theta = \tan^{-1}\left(\frac{X}{R}\right) = \tan^{-1}(35) = 88,36^{\circ}$$

Así, la impedancia en base propia del motor resulta ser:

 $Z = 0,1539 \bot 88,36^{\circ}(pu)$

Empleando la potencia base de 100 MVA la impedancia en pu del motor sincrónico resulta ser:

$$Z_{MS} = 0,1539 \bot 88,36^{\circ} \frac{100}{4,301} = 3,578 \bot 88,36^{\circ} (pu)$$

En relación con el motor de inducción M1 DE 700 kW la reactancia es : X'd = 0,1846(pu)

Considerando la relación X/R de 23,665, el ángulo de la impedancia es 87,58° y por lo tanto la impedancia en base propia es:

$$Z_{M1} = 0,1846 \bot 87,58^{\circ}(pu)$$

Empleando la potencia base de 100 MVA, la impedancia en por unidad del motor de inducción M1 resulta ser:

$$Z_{M1} = 0,1846 \bot 87,58^{\circ} \frac{100}{0,758} = 24,35 \bot 87,58^{\circ} (pu)$$

En relación con el motor de inducción M2 DE 575 kW la reactancia es :

$$X'd = 0,1846(pu)$$

Considerando la relación X/R de 22,127, el ángulo de la impedancia es 87,41° y por lo tanto la impedancia en base propia es:

$$Z_{M2} = 0,1846 \bot 87,41^{\circ}(pu)$$

Empleando la potencia base de 100 MVA, la impedancia en por unidad del motor de inducción M2 resulta ser:

$$Z_{M2} = 0,1846 \bot 87,41^{\circ} \frac{100}{0,623} = 29,63 \bot 87,41^{\circ} (pu)$$
$$X/R = 23,665 \quad \text{Arc tg}(23,665) = 87,580 \bot 88,36^{\circ}$$

En relación con el motor de inducción M3 DE 932 kW la reactancia es :

X'd = 0,1539(pu)

Considerando la relación X/R de 26,224, el ángulo de la impedancia es 87,82° y por lo tanto la impedancia en base propia es:

$$Z_{M3} = 0,1539 \bot 87,82^{\circ}(pu)$$

Empleando la potencia base de 100MVA, la impedancia en por unidad del motor de inducción M3 resulta ser:

$$Z_{M3} = 0,1539 \bot 87,41^{\circ} \frac{100}{1,008} = 15,27 \bot 87,82^{\circ}(pu)$$

Realizado el cálculo de parámetros de los distintos componentes de la red eléctrica en estudio, en la Tabla 3.2 se resumen los valores en pu en base de 100 MVA.

Tabla 3.2 Parámetros en pu de los componentes de la red

D · · ·/		Impedancia
Descripcion	Designation	Z °/1 (Base 100 MVA)
Empalme	ZSEP	0,204∟82,87°
Transformador 1	ZT 1	0,929∟85,78°
Transformador 2	ZT 2	1,3∟85,29°
Transformador 3	ZT 3	2,875∟81,98°
Transformador 4	ZT 4	2,875∟81,98°
Línea aérea	ZLINEA	0,619∟66,74°
Alimentador 1	ZAL1	0,0018∟59,88°
Alimentador 2	ZAL2	0,013∟48,16°
Alimentador 3	ZAL3	0,0287∟33,69°
Alimentador 4	ZAL4	0,04∟17,4°
Alimentador 5	ZAL5	0,00316∟29,36°
Alimentador 6	ZAL6	0,023∟59,88°
Motor Sincrónico 1	ZMS	3,578∟88,36°
Motor Inducción 1	ZM1	24,35∟87,58°
Motor Inducción 2	ZM2	29,63 – 87,41°
Motor Inducción 3	ZM3	15,27∟87,82°

Así, en la Figura 3.1 se presenta el diagrama de impedancia en pu de secuencia positiva de la red eléctrica en estudio.

Figura 3.1 Diagrama de impedancias

3.3 Cálculo de cortocircuito trifásico en barras

3.3.1 Fundamentos

Definida la red de impedancia en pu, la corriente de cortocircuito trifásico en pu queda definida por:

$$ICC_{3\Phi} = \frac{1.0}{Z_{TH}}(pu)$$

Así, el cálculo de cortocircuito se reduce a determinar la impedancia de secuencia positiva desde el punto de falla, designado por Z_{TH} .

3.3.2 Corto circuito trifásico en barra 1

Con referencia al diagrama de impedancias de la Figura 3.1, en la Figura 3.2 se presenta la red simplificada respecto de la barra 1, identificando los aportes a la falla IA e IB.

Figura 3.2 Diagrama de impedancia para falla trifásica en Barra1

Así, la impedancia equivalente respecto de la Barra 1 viene dada por:

$$Z_{EQ1} = 0,204 \lfloor 82,87^{\circ} / /3,538 \lfloor 83,87^{\circ} = \left(\frac{1}{0,204 \lfloor 82,87^{\circ}} + \frac{1}{3,538 \lfloor 83,87^{\circ}}\right)^{-1}$$
$$= 0,193 \lfloor 82,92^{\circ}(pu)$$

Luego, la corriente de falla trifásica en barra 1 resulta ser:

$$ICC_{B1} = \frac{1 \bot 0^{\circ}}{0,193 \bot 82,92^{\circ}} = 5,181 \bot - 82,92^{\circ}(pu)$$

Considerando una corriente base de 4,373kA, la corriente de falla en magnitud real es:

$$ICC_{B1} = ICC_{PU} * I_{BASE} = 5,181 * 4,373 = 22,661 kA$$

Conocida la corriente de cortocircuito trifásica en Barra 1, los aportes a la corriente de falla son:

$$I_{A} = 5,181 \bot - 82,92^{\circ} * \frac{3,538 \bot 83,87^{\circ}}{3,538 \bot 83,87^{\circ} + 0,204 \bot 82,87^{\circ}} = 4,899(\text{pu})$$

$$I_{\rm B} = 5,181 \bot - 82,92^{\circ} * \frac{0,204 \bot 82,87^{\circ}}{0,204 \bot 82,87^{\circ} + 3,538 \bot 83,87^{\circ}} = 0,282 (\rm pu)$$

Considerando las magnitudes reales se tiene:

$$I_A = 4,899_{(pu)} * 4,373 = 21,43$$
kA

$$I_{\rm B} = 0.282_{\rm (pu)} * 4.373 = 1.234$$
kA

En forma complementaria en la Figura 3.3 se presenta el diagrama unilineal de la red empleando el software ETAP, simulando una falla trifásica en la Barra 1.

Figura 3.3 Simulación de falla trifásica en Barra 1 empleando ETAP

3.3.3 Corto circuito trifásico en barra 2

En relación a la Barra 2, en Figura 3.4 se presentan los aportes a la falla IA, IB, IC.

Figura 3.4 Diagrama de impedancia para falla trifásica en Barra2

Así, la impedancia equivalente respecto de la Barra 2 viene dada por:

$$Z_{EQ2} = 0,819 \bot 70,69^{\circ} / /4,53 \bot 87,59^{\circ} / /8,44 \bot 87,13^{\circ} = = \left(\frac{1}{0,819 \bot 70,69^{\circ}} + \frac{1}{4,53 \bot 87,59^{\circ}} + \frac{1}{8,44 \bot 87,13^{\circ}}\right)^{-1} = 0,646 \bot 74,30^{\circ} (pu)$$

Así, la corriente de falla trifásica en barra 2 resulta ser:

$$ICC_{B2} = \frac{1 \bot 0^{\circ}}{0,646 \bot 74,30^{\circ}} = 1,548 \bot - 74,30^{\circ} (pu)$$

Considerando una corriente base de 4,373kA, la corriente de falla en magnitud real es:

$$ICC_{B2} = ICC_{PU} * I_{BASE} = 1,548 * 4,373 = 6,771 kA$$

Conocida la corriente de cortocircuito trifásica en Barra 1, los aportes a la corriente de falla son:

$$I_{\rm A} = \frac{1 \bot 0^{\circ}}{0.819 \bot 70.69^{\circ}} = 1.221 (\rm pu)$$

$$I_{\rm B} = \frac{1 \bot 0^{\circ}}{4,537 \bot 87,59^{\circ}} = 0,22 ({\rm pu})$$

$$I_{\rm C} = \frac{1 \bot 0^{\circ}}{8,444 \bot 87,13^{\circ}} = 0,118 ({\rm pu})$$

Así, considerando las magnitudes reales se tiene:

$$I_A = 1,221_{(pu)} * 4,373 = 5,34$$
kA

$$I_{\rm B} = 0.22_{\rm (pu)} * 4.373 = 0.963$$
kA

$$I_C = 0,118_{(pu)} * 4,373 = 0,516$$
kA

En forma complementaria en la Figura 3.5 se presenta el diagrama unilineal de la red empleando el software ETAP, simulando una falla trifásica en la Barra 2.

Figura 3.5 Simulación de falla trifásica en Barra 2 empleando ETAP
3.3.4 Corto circuito trifásico en barra 3

En la Figura 3.2 se presenta la red simplificada respecto de la barra 3, identificando los aportes a la falla IA e IB.

Figura 3.6 Diagrama de impedancia para falla trifásica en Barra 3

$$Z_{EQ3} = 1,699 \lfloor 79,19^{\circ} / /3,578 \lfloor 88,36^{\circ} = \left(\frac{1}{1,699 \lfloor 79,19^{\circ}} + \frac{1}{3,578 \lfloor 88,36^{\circ}}\right)^{-1}$$

= 1,155 \lappa 82,14°(pu)

Luego, la corriente de falla trifásica en barra 3 resulta ser:

$$ICC_{B3} = \frac{1 \bot 0^{\circ}}{1,155 \bot 82,14^{\circ}} = 0,866 \bot - 82,14^{\circ}(pu)$$

Considerando un voltaje base de 6,3 kV y una corriente base de 9,164 kA, la corriente de falla en magnitud real es:

$$ICC_{B3} = ICC_{PU} * I_{BASE} = 0,866 * 9,164 = 7,936 kA$$

Conocida la corriente de cortocircuito trifásica en Barra 3, los aportes a la corriente de falla son:

$$I_{A} = 0,866 \bot - 82,14^{\circ} * \frac{3,578 \bot 88,36^{\circ}}{3,578 \bot 88,36^{\circ} + 1,699 \bot 79,19^{\circ}} = 0,587(\text{pu})$$
$$I_{B} = 0,866 \bot - 82,14^{\circ} * \frac{1,699 \bot 79,19^{\circ}}{1,699 \bot 79,19^{\circ} + 3,578 \bot 88,36^{\circ}} = 0,279(\text{pu})$$

Así, en magnitudes reales los aportes a la falla trifásica en barra 3 resulta ser:

 $I_A = 0,587 * 9,164 = 5,380$ kA

 $I_{\rm B} = 0,279 * 9,164 = 2,557 \rm kA$

En forma complementaria en la Figura 3.7 se presenta el diagrama unilineal de la red empleando el software ETAP, simulando una falla trifásica en la Barra 3.

Figura 3.7 Simulación de falla trifásica en Barra 3 empleando ETAP

3.3.5 Corto circuito trifásico en barra 4

En la Figura 3.8 se presenta la red simplificada respecto de la barra 4, identificando los aportes a la falla IA como también los aportes a la falla de los motores de inducción IM1,IM2 e IM3.

Figura 3.8 Diagrama de impedancia para falla trifásica en Barra4

$$Z_{EQ4} = 2,01 \lfloor 80,49^{\circ} / /7,128 \lfloor 87,65^{\circ} = \left(\frac{1}{2,01 \lfloor 80,49^{\circ}} + \frac{1}{7,128 \lfloor 87,65^{\circ}}\right)^{-1}$$

= 1,57 \lapla 82,06°(pu)

Luego, la corriente de falla trifásica en barra 3 resulta ser:

$$ICC_{B4} = \frac{1 \lfloor 0^{\circ}}{1,57 \lfloor 82,06^{\circ}} = 0,637 \lfloor -82,06^{\circ}(pu)$$

Considerando un voltaje base de 2,4 kV y una corriente base de 24,056 kA, la corriente de falla en magnitud real es:

$$ICC_{B4} = ICC_{PU} * I_{BASE} = 0,637 * 24,056 = 15,324 kA$$

Conocida la corriente de cortocircuito trifásica en Barra 4, los aportes a la corriente de falla son:

$$I_{A} = \frac{1 \bot 0^{\circ}}{2,01 \bot 80,48^{\circ}} = 0,498(pu)$$
$$I_{M1} = \frac{1 \bot 0^{\circ}}{24,35 \bot 87,58^{\circ}} = 0,041(pu)$$
$$I_{M2} = \frac{1 \bot 0^{\circ}}{29,63 \bot 87,41^{\circ}} = 0,034(pu)$$

$$I_{M3} = \frac{1 \bot 0^{\circ}}{15,27 \bot 87,82^{\circ}} = 0,066(\text{pu})$$

Así, considerando las magnitudes reales se tiene:

 $I_{\rm A} = 0,498_{\rm (pu)} * 24,056 = 11,980$ kA

 $I_{M1} = 0,041_{(pu)} * 24,056 = 0,986$ kA

 $I_{M2} = 0,034_{(pu)} * 24,056 = 0,818$ kA

 $I_{M3} = 0,066_{(pu)} * 24,056 = 1,588$ kA

En forma complementaria en la Figura 3.9 se presenta el diagrama unilineal de la red empleando el software ETAP, simulando una falla trifásica en la Barra 4.

Figura 3.9 Simulación de falla trifásica en Barra 4 empleando ETAP

3.3.6 Corto circuito trifásico en barra 5

En la Figura 3.10 se presenta la red de impedancia simplificada donde veremos la corriente de falla trifásica.

Figura 3.10 Diagrama de impedancia para falla trifásica en Barra5

 $Z_{EO5} = 3,535 \bot 79,99^{\circ}(pu)$

Luego, la corriente de falla trifásica en barra 5 resulta ser:

$$ICC_{B5} = \frac{1 \bot 0^{\circ}}{3,5357 \bot 79,99^{\circ}} = 0,283 \bot - 79,99^{\circ}(pu)$$

Considerando un voltaje base de 0,4 kV y una corriente base de 144,338 kA, la corriente de falla en magnitud real es:

$$ICC_{B5} = ICC_{PU} * I_{BASE} = 0,283 * 144,338 = 40,848 kA$$

En forma complementaria en la Figura 3.11 se presenta el diagrama unilineal de la red empleando el software ETAP, simulando una falla trifásica en la Barra 5.

Figura 3.11 Simulación de falla trifásica en Barra 5 empleando ETAP

3.3.7 Corto circuito trifásico en barra 6

En la Figura 3.12 se presenta la red de impedancia simplificada donde veremos la corriente de falla trifásica.

Figura 3.12 Diagrama de impedancia para falla trifásica en Barra6

$$Z_{EO6} = 3,518 \bot 80,53^{\circ}(pu)$$

Luego, la corriente de falla trifásica en barra 6 resulta ser:

$$ICC_{B6} = \frac{1 \bot 0^{\circ}}{3,518 \bot 80,53^{\circ}} = 0,284 \bot - 80,53^{\circ}(pu)$$

Considerando un voltaje base de 0,4 kV y una corriente base de 144,338 kA, la corriente de falla en magnitud real es:

$$ICC_{B6} = ICC_{PU} * I_{BASE} = 0,284 * 144,338 = 40,992 kA$$

En forma complementaria en la Figura 3.13 se presenta el diagrama unilineal de la red empleando el software ETAP, simulando una falla trifásica en la Barra 6.

Figura 3.13 Simulación de falla trifásica en Barra 6 empleando ETAP

Así, en Tabla 3.3 se presentan resumen de cálculos de cortocircuito trifásico en cada una de las barras comparado con software ETAP.

Barras	Tensión (kV)	Icc 3Ф (kA) ETAP	Icc 3Ф (kA) CALCULADO
Barra 1	13,2	22,7	22,661
Barra 2	13,2	6,8	6,770
Barra 3	6,3	8,1	7,963
Barra 4	2,4	15,7	15,324
Barra 5	0,4	40,92	40,848
Barra 6	0,4	41,1	40,992

Tabla 3.3 Resumen de cortocircuito trifásico en barras

Universidad del Bío-Bío. Sistema de Bibliotecas – Chile

Capítulo IV

Estudio de coordinación de protecciones

Capítulo IV: Estudio de coordinación de protecciones

4.1 Planteamiento

Los dispositivos de protección son elementos destinados a detectar condiciones anómalas de funcionamiento en las redes eléctricas, no a prevenir accidentes, pero si a disminuir las consecuencias que estos tengan tanto como para las personas, como para la misma red eléctrica.

En la actualidad los dispositivos de protección tienen la obligación de ser especialmente selectivos y rápidos en la detección de condiciones anómalas de funcionamiento, por lo tanto el estudio de estos elementos de protección, se ha concentrado en desarrollar dispositivos capaces de detectar más de un parámetro a la vez. En el estudio de coordinación de protecciones es cada vez más frecuente emplear herramientas numéricas que facilitan y permiten apoyar el estudio. En tal sentido, se destaca el software ETAP, el cual se utiliza en el presente seminario.

4.2 Análisis de coordinación de protecciones

A continuación se realiza el análisis de coordinación de protecciones para falla trifásica. En tal sentido, para cada caso se presenta el diagrama unilineal con la falla considerada, la secuencia y tiempo de operación y la carta de coordinación asociada.

Cabe destacar que los ajustes considerados en las protecciones corresponden a los registros en terreno, los cuales se presentan en las siguientes tablas.

Deseringián/Euroján	Luidad aantual CD2
Descripcion/ Function	Unidad control CB5
Fabricante	Schneider Electric
Modelo	Micrologic 5.0
Protección	
Long-Time	
Pickup	0,4 Amps: 1280(A)
Short-time	
pickup	1,5 Amps: 1920 (A)
Instantaneous	
Pickup	2 Amps: 6400 (A)

 Tabla 4.1: Ajustes de unidades de control Micrologic

Descripción/ Función	Relé 0	Relé 1	
Fabricante	GE Multilin	GE Multilin	
Modelo	750	750	
Tensión (kV)	13,2 kV	13,2kV	
PT de fase	14/120 v	14/120 v	
CT de fase	1500/5	1200/5	
Fase Overcurrent			
Curve Type	ANSI Extremely inverse	ANSI Extremely inverse	
Pickup range	0,05-20*CT	0,05-20*CT	
Pickup	0,47	0,58	
Relay Amps	2,35 Prim. Amp: 705	2,9 Prim. Amp: 696	
Time Dial	4	2	
Fase instantaneous			
Pickup Range	0,05-20*CT	0,05-20*CT	
Pickup	15	15	
Relay Amps	75 Prim. Amp: 22500	75 Prim. Amp: 18000	
Delay Range (sec)	0-600	0-600	
Delay (sec)	0,01 0,01		

-1 all $a + 2$. Alusius un Kulus 1.00
--

Tabla 4.3: Ajuste de Rel	és 750
--------------------------	--------

Descripción/ Función	Relé 2	Relé 3		
Fabricante	GE Multilin	GE Multilin		
Modelo	750	750		
Tensión (kV)	13,2 kV	13,2kV		
PT de fase	14/120 v	14/120 v		
CT de fase	600/5	300/5		
Fase Overcurrent				
Curve Type	ANSI Extremely inverse ANSI Extremely inverse			
Pickup range	0,05-20*CT	0,05-20*CT		
Pickup	0,51	0,73		
Relay Amps	2,55 Prim. Amp: 306	3,65 Prim. Amp: 219		
Time Dial	3	4		
Fase instantaneous				
Pickup Range	0,05-20*CT	0,05-20*CT		
Pickup	15	15		
Relay Amps	75 Prim. Amp: 9000	75 Prim. Amp: 4500		
Delay Range (sec)	0-600	0-600		
Delay (sec)	0,01	0,01		

Descripción/ Función		Relé 4		Relé 5
Fabricante		GE Multilin		GE Multilin
Modelo		750		750
Tensión (kV)	13,2 kV			13,2kV
PT de fase		14/120 v		14/120 v
CT de fase		100/5		100/5
Fase Overcurrent				
Curve Type	A	NSI Extremely inverse	ANSI Extremely inverse	
Pickup range	0,05-20*CT		0,05-20*CT	
Pickup	0,87		0,87	
Relay Amps	4,35 Prim. Amp: 87		5,35	Prim. Amp: 87
Time Dial	7			6
Fase instantaneous				
Pickup Range		0,05-20*CT		0,05-20*CT
Pickup		15		15
Relay Amps	75	Prim. Amp: 1500	75	Prim. Amp: 1500
Delay Range (sec)		0-600		0-600
Delay (sec)	0,01 0,01		0,01	

Tabla 4.4: Ajuste de Relés 750

Tabla 4.5: Ajuste de Relé 750

Descripción/ Función	Relé 7	
Fabricante	GE Multilin	
Modelo	750	
Tensión (kV)	13,2 kV	
PT de fase	14/120 v	
CT de fase	1500/5	
Fase Overcurrent		
Curve Type	ANSI Extremely inverse	
Pickup range	0,05-20*CT	
Pickup	0,43	
Relay Amps	2,15 Prim. Amp: 645	
Time Dial	2	
Fase instantaneous		
Pickup Range	0,05-20*CT	
Pickup	15	
Relay Amps	75 Prim. Amp: 22500	
Delay Range (sec)	0-600	
Delay (sec)	0,01	

	Tubla 1.0. Tijuste Refes t	07	
Descripción/ Función	Relé 6	Relé 8	
Fabricante	GE Multilin	GE Multilin	
Modelo	469	469	
Tensión (kV)	6,3 kV	2,4 kV	
PT de fase	14/120 v	14/120 v	
CT de fase	600/5	300/5	
Fase Thermal			
Туре	Standard Overload Curve	Standard Overload Curve	
Trip Range	1,01-1,25*FLA	1,01-1,25*FLA	
Trip	1,01	1,01	
Trip Amps	3,512 Prim. Amp: 421,4	3,279 Prim. Amp: 196,8	
Curve Multipler	2	5	
Fase instantaneous			
Trip Range	2-20*CT Pri	2-20*CT Pri	
Trip	15	15	
Trip Amps	75 Prim. Amp: 9000	75 Prim. Amp: 4500	
Delay (sec)	0,01	0,01	
Datos motor	Motor Sincrónico MS	Motor de Inducción MI1	
FLA (A)	417,3	194,8	
% LRC	200%	600%	

Tabla 4.6: Ajuste Relés 469

Tabla 4.7: Ajuste Relés 469

Descripción/ Función	Relé 9	Relé 10	
Fabricante	GE Multilin	GE Multilin	
Modelo	469	469	
Tensión (kV)	2,4 kV	2,4kV	
PT de fase	14/120 v	14/120 v	
CT de fase	300/5 300/5		
Fase Thermal			
Туре	Standard Overload Curve	Standard Overload Curve	
Trip Range	1,01-1,25*FLA 1,01-1,25*FLA		
Trip	1,01	1,01	
Trip Amps	2,7 Prim. Amp: 162,0	4,355 Prim. Amp: 261,29	
Curve Multipler	2 4		
Fase instantaneous			
Trip Range	2-20*CT Pri	2-20*CT Pri	
Trip	15	15	
Trip	75 Prim. Amp: 4500	75 Prim. Amp: 4500	
Delay (sec)	0,01	0,01	
Datos motor	Motor de Inducción MI2	Motor de Inducción MI3	
FLA (A)	160,4	258,7	
% LRC	600%	600%	

4.3 Análisis de falla trifásica en las barras

4.3.1 Análisis de falla trifásica en barra 1

Referente al diagrama unilineal de la Figura 4.1 se puede visualizar la operación de la protección CB1 y sus aportes de corriente de falla correspondiente, con respecto a la falla en barra 1.

Figura 4.1: Falla trifásica en barra 1

En relación a la información de la Tabla 4.8, para la falla trifásica en la barra 1, el relé R0 detecta la corriente de falla, dando la señal de apertura instantánea al interruptor CB1, eliminando el aporte de la red eléctrica a la falla.

C	Sequence	e-of-Oper	ation Events	- Output	Repor	t: coci		$\mathbf{\times}$
		3-Phase (Symm				al) fault o	n bus: BARRA 1	
	Data Rev.: Base				Config:	Normal	Date: 30-10-2015	
	Time (ms)	ID	If (kA)	T1 (ms)	T2 ((ms)	Condition	
	339 787 887 2449 2549 4317 4417 6389 6489 10581 10681 13454	CB1 Relay7 CB12 Relay2 CB4 Relay1 CB2 Relay3 CB5 Relay6 CB8 Relay9	2,491 0,834 1,287 0,453 1,747 0,6	100 787 100 2449 100 4317 100 6389 100 10581 100 13454			Tripped by Relay0 Phase - OC1 - 51 Phase - OC1 - 51 Tripped by Relay7 Phase - OC1 - 51 Phase - OC1 - 51 Tripped by Relay2 Phase - OC1 - 51 Phase - OC1 - 51 Tripped by Relay1 Phase - OC1 - 51 Phase - OC1 - 51 Tripped by Relay3 Phase - OC1 - 51 Overload Phase - Thermal Tripped by Relay6 Overload Phase - Thermal Overload Phase - Thermal	
	13554 18244 18344 33615 33715	CB10 Relay10 CB11 Relay8 CB9	1,162 0,729	100 18244 100 33615 100			Tripped by Relay9 Overload Phase - Thermal Overload Phase - Thermal Tripped by Relay10 Overload Phase - Thermal Overload Phase - Thermal Tripped by Relay8 Overload Phase - Thermal	

Tabla 4.8: Secuencia y tiempo de operación de las protecciones

Por otro lado, en la Figura 4.2 se presenta la carta de coordinación, estableciendo la correcta operación de las protecciones para esta condición de falla.

Figura 4.2: Carta de Coordinación

4.3.2 Análisis de falla trifásica en barra 2

Referente al diagrama unilineal de la Figura 4.3 se puede visualizar la operación de las protecciones CB2, CB1 y sus corrientes de aporte a la falla correspondiente, con respecto a la falla en la barra 2.

Figura 4.3: Falla trifásica en barra 2

En relación a la información de la Tabla 4.8, para la falla trifásica en la barra 2, el relé R1 detecta la corriente de falla, dando la señal al interruptor CB2, eliminando el aporte de la red eléctrica y de los motores MS, MI1,MI2 y MI3 a la falla en barra 2.

Sequence	e-of-Oper	ration Events	Output	i Report: coci		\mathbf{X}
3-Phase (Symmetrical) fault on bus: BARRA 2						
,		Data Rev.: Base		Config: Normal	Date: 30-10-2015	
Time (ms)	ID	If (kA)	T1 (ms)	T2 (ms)	Condition	
265	Relay1	5,342	265		Phase - OC1 - 51	
365	CB2		100		Tripped by Relay1 Phase - OC1 - 51	
538	Relay0	5,342	538		Phase - OC1 - 51	
556	Relay7	3,012	556		Phase - OC1 - 51	
638	CB1		100		Tripped by Relay0 Phase - OC1 - 51	
656	CB12		100		Tripped by Relay7 Phase - OC1 - 51	
1621	Relay2	1,008	1621		Phase - OC1 - 51	
1721	CB4		100		Tripped by Relay2 Phase - OC1 - 51	
3987	Relay3	0,548	3987		Phase - OC1 - 51	
4087	CB5		100		Tripped by Relay3 Phase - OC1 - 51	
7102	Relay6	2,112	7102		Overload Phase - Thermal	
7202	CB8		100		Tripped by Relay6 Overload Phase - Thermal	
8984	Relay9	0,726	8984		Overload Phase - Thermal	
9084	CB10		100		Tripped by Relay9 Overload Phase - Thermal	
12276	Relay10	1,405	12276		Overload Phase - Thermal	
12376	CB11		100		Tripped by Relay10 Overload Phase - Thermal	
22447	Relay8	0,882	22447		Overload Phase - Thermal	
22547	CB9		100		Tripped by Relay8 Overload Phase - Thermal	

Tabla 4.8: Secuencia y tiempo de operación de las protecciones

Así, en la Figura 4.4 se presenta la carta de coordinación, estableciendo la correcta operación de las protecciones para esta condiciona de falla.

Figura 4.4: Carta de coordinación

4.3.3 Análisis de falla trifásica en barra 3

Referente al diagrama unilineal de la Figura 4.5 se puede visualizar la operación de las protecciones CB4, CB2, CB1, CB8 y sus corrientes de falla correspondiente, con respecto a la falla analizada en barra 3.

Figura 4.5: Falla trifásica en barra 3

En relación a la información de la Tabla 4.9, para la falla trifásica en la barra 3, el relé R2 detecta la corriente de falla, dando la señal al interruptor CB4, eliminando el aporte de la red eléctrica y de los motores MS, MI1,MI2 y MI3 a la falla en barra 3.

Sequence	e-of-Oper	ration Events	Output	t Report: coci		×
	3-Phase	(Symmetrical) fau	lt on conn	ector between BA	ARRA 3 & CT18. Adjacent bus: BARRA 3	
		Date: 30-10-2015				
Time (ms)	ID	If (kA)	T1 (ms)	T2 (ms)	Condition	
354	Relay2	2,58	354		Phase - OC1 - 51	
454	CB4		100		Tripped by Relay2 Phase - OC1 - 51	
1029	Relay1	2,348	1029		Phase - OC1 - 51	
1129	CB2		100		Tripped by Relay1 Phase - OC1 - 51	
2113	Relay0	elay1 2,348 1029 Phase - OC1 - 51 B2 100 Tripped by Relay1 Phase - OC1 - 51 elay0 2,348 2113 Phase - OC1 - 51 B1 100 Tripped by Relay0 Phase - OC1 - 51 elay6 5.406 2776 Overload Phase - Thermal				
2213	CB1		100		Tripped by Relay0 Phase - OC1 - 51	
2776	Relay6	5,406	2776		Overload Phase - Thermal	
2876	CB8		100		Tripped by Relay6 Overload Phase - Thermal	
3257	Relay7	1,324	3257		Phase - OC1 - 51	
3357	CB12		100		Tripped by Relay7 Phase - OC1 - 51	
48501	Relay3	0,241	> 48501		Phase - OC1 - 51	
48601	CB5		100		Tripped by Relay3 Phase - OC1 - 51	
59202	Relay9	0,319	59202		Overload Phase - Thermal	
59302	CB10		100		Tripped by Relay9 Overload Phase - Thermal	
/4456	Relay10	0,618	/4456		Overload Phase - Thermal	
/4556	CB11		100		Tripped by Relay10 Overload Phase - Thermal	
147096	Kelay8	0,388	14/896		Overload Phase - Thermal Trian ad hu Balavo Overland Phase - Thermal	
141996	CB9		100		Tripped by Kelayo Overidad Phase - Thermal	

Tabla 4.9: Secuencia y tiempo de operación de las protecciones

Así, en la Figura 4.6 se presenta la carta de coordinación, estableciendo la correcta operación de las protecciones para esta condiciona de falla.

Figura 4.6: Carta de coordinación

4.3.4 Análisis de falla trifásica en barra 4

Referente al diagrama unilineal de la Figura 4.7 se puede visualizar la operación de las protecciones CB12, CB5, CB2, CB1 y sus corrientes de falla correspondiente, con respecto a la falla analizada en barra 4.

Figura 4.7: Falla trifásica en barra 4

En relación a la información de la Tabla 4.10, para la falla trifásica en la barra 4, el relé R7 detecta la corriente de falla, dando la señal al interruptor CB12, eliminando el aporte de la red eléctrica y de los motores MS, MI1,MI2 y MI3 a la falla en barra 4.

	Sequence	e-of-Ope	ation Events	- Output	t Report: coci		×			
[3-	Phase (Sy	mmetrical) fault o	on bus: BARRA 4				
ľ			Data Rev.: Base		Config: Normal	Date: 30-10-2015				
	Time (ms)	ID	If (kA)	T1 (ms)	T2 (ms)	Condition				
(I	123	Relay7	12,067	123		Phase - OC1 - 51				
	223	CB12	-	100		Tripped by Relay7 Phase - OC1 - 51				
	392	Relay3	2,194	392		Phase - OC1 - 51				
	492	CB5		100	100 Tripped by Relay3 Phase - OC1 - 51					
	1715	Relay1	1,856	1715		Phase - OC1 - 51				
	1815	CB2		100		Tripped by Relay1 Phase - OC1 - 51				
	3533	Relay0	1,856	3533		Phase - OC1 - 51				
	3633	CB1		100		Tripped by Relay0 Phase - OC1 - 51				
	6185	Relay7 12,067 123 CB12 100 100 Relay3 2,194 392 CB5 100 1015 CB2 100 1015 CB2 100 Relay1 1,856 CB1 100 Relay0 1,865 CB1 100 Relay9 0,868 CB1 100 Relay1 1,68 CB1 100 Relay1 1,68 CB1 100 Relay1 1,68 CB1 100 Relay1 1,68 CB1 100 100 Relay1 CB2 100 100 Relay1 CB3 100 100 100 Relay10 1,68 8492 100 CB11 100 100 100 CB9 10054 15453 100		6185		Overload Phase - Thermal				
	6285	Relay7 12,067 123 CB12 100 Relay3 2,194 392 CB5 100 Relay1 1,856 1715 CB2 100 Relay1 1,856 Relay0 1,856 3533 CB1 100 Relay10 1,686 Relay10 1,68 8492 CB11 100 Relay8 1,054 CB12 100 Relay8 1,054 1545 CB9 100 Relay2 0,35 3096		100		Tripped by Relay9 Overload Phase - Thermal				
	8492	Relay10	1,68	8492		Overload Phase - Thermal				
	8592	CB11		100		Tripped by Relay10 Overload Phase - Thermal				
	15453	Relay8	1,054	15453		Overload Phase - Thermal				
	15553	453 Relay8 1,054 15453 553 CB9 100		100		Tripped by Relay8 Overload Phase - Thermal				
	30961	Relay2	0,35	30961		Phase - OC1 - 51				
	31061	CB4		100		Tripped by Relay2 Phase - OC1 - 51				
	83521	Relay6	U,734	83521		Overload Phase - Thermal				
	83621	CB8		100		Tripped by Relay6 Overload Phase - Thermal				

Tabla 4.10: Secuencia y tiempo de operación de las protecciones

Así, en la Figura 4.8 se presenta la carta de coordinación, estableciendo la correcta operación de las protecciones para esta condiciona de falla.

Per Unit

Figura 4.8: Carta de coordinación

4.3.5 Análisis de falla trifásica motor de inducción MI1

Referente al diagrama unilineal de la Figura 4.9 se puede visualizar la operación de las protecciones CB9, F3, CB12, CB5, CB2,CB1 y sus corrientes de falla correspondiente, con respecto a la falla analizada en motor de inducción MI1.

Figura 4.9: Falla trifásica en motor de inducción MI1

En relación a la información de la Tabla 4.11, para la falla trifásica en motor de inducción MI1, el relé R8 detecta la corriente de falla, dando la señal al interruptor CB9, eliminando el aporte de la red eléctrica y de los motores MS, MI2 y MI3 a la falla en motor de inducción MI1.

~				•		*	
	Sequence	e-of-Oper	ation Events	- Output	t Report: coci		×
		3-Phas	e (Symmetrical) f	ault on co	nnector between	CT12 & MI 1. Adjacent bus: BARRA 4	
			Data Rev.: Base	•	Config: Normal	Date: 30-10-2015	
Ι,							
	Time (ms)	ID	If (kA)	T1 (ms)	T2 (ms)	Condition	
	10,0	Relay8	14,601	10,0		Overload Phase - Instantaneous	
	110	CB9		100		Tripped by Relay8 Overload Phase - Instantane	
	123	Relay7	12,067	123		Phase - OC1 - 51	
	132	Fuse3	14,601	86,7	132		
	223	CB12		100		Tripped by Relay7 Phase - OC1 - 51	
	392	Relay3	2,194	392		Phase - OC1 - 51	
	492	CB5		100		Tripped by Relay3 Phase - OC1 - 51	
	1715	Relay1	1,856	1715		Phase - OC1 - 51	
	1815	CB2		100		Tripped by Relay1 Phase - OC1 - 51	
	3533	Relay0	1,856	3533		Phase - OC1 - 51	
	3633	CB1		100		Tripped by Relay0 Phase - OC1 - 51	
	6185	Relay9	0,868	6185		Overload Phase - Thermal	
	6285	CB10		100		Tripped by Relay9 Overload Phase - Thermal	
	8492	Relay10	1,68	8492		Overload Phase - Thermal	
	8592	CB11		100		Tripped by Relay10 Overload Phase - Thermal	
	30961	Relay2	0,35	30961		Phase - OC1 - 51	
	31061	CB4		100		Tripped by Relay2 Phase - OC1 - 51	
	83521	Relay6	0,734	83521		Overload Phase - Thermal	
	83621	CB8		100		Tripped by Relay6 Overload Phase - Thermal	

Tabla 4.11: Secuencia y tiempo de operación de las protecciones

Así, en la Figura 4.10 se presenta la carta de coordinación, estableciendo la correcta operación de las protecciones para esta condiciona de falla.

Figura 4.10: Carta de coordinación

4.3.6 Análisis de falla trifásica motor de inducción MI2

Referente al diagrama unilineal de la Figura 4.11 se puede visualizar la operación de las protecciones CB10, F2, CB12, CB5, CB2, CB1 y sus corrientes de falla correspondiente, con respecto a la falla analizada en motor de inducción MI2.

Figura 4.11: Falla trifásica en motor de inducción MI2

En relación a la información de la Tabla 4.12, para la falla trifásica en motor de inducción MI2, el relé R9 detecta la corriente de falla, dando la señal al interruptor CB10, eliminando el aporte de la red eléctrica y de los motores MS, MI1 y MI3 a la falla en motor de inducción MI2.

3-Phase (Symmetrical) fault on connector between MI 2 & CT19. Adjacent bus: BARRA 4 Data Rev.: Base Config: Normal Date: 30-10-2015 Time (ms) ID If (kA) T1 (ms) T2 (ms) Condition 10,0 Relay9 14,786 10,0 Overload Phase - Instantaneous III 110 CB10 100 Tripped by Relay9 Overload Phase - Instantane Phase - OC1 - 51 123 Relay7 12,067 123 Phase - OC1 - 51 127 Fuse2 14,786 63,3 127 223 CB12 100 Tripped by Relay7 Phase - OC1 - 51 992 392 Relay3 2,194 392 Phase - OC1 - 51 914 492 CB5 100 Tripped by Relay7 Phase - OC1 - 51 915 1715 Relay1 1,856 1715 Phase - OC1 - 51 916 1815 CB2 100 Tripped by Relay1 Phase - OC1 - 51 916 916 916 916 916 916 916 916 916	Sequence	e-of-Ope	ration Events	- Outpu	t Report: co	ci	×				
Data Rev.: Base Config: Normal Date: 30-10-2015 Time (ms) ID If (kA) T1 (ms) T2 (ms) Condition 10,0 Relay9 14,786 10,0 Overload Phase - Instantaneous Instantaneous 110 CB10 100 Tripped by Relay9 Overload Phase - Instantaneous Instantaneous 123 Relay7 12,067 123 Phase - OC1 - 51 223 CB12 100 Tripped by Relay3 Phase - OC1 - 51 392 Relay3 2,194 392 Phase - OC1 - 51 492 CB5 100 Tripped by Relay3 Phase - OC1 - 51 1715 Relay1 1,856 1715 Phase - OC1 - 51 1815 CB2 100 Tripped by Relay3 Phase - OC1 - 51 3633 CB1 100 Tripped by Relay1 Phase - OC1 - 51 3633 CB1 100 Tripped by Relay1 Phase - OC1 - 51 3633 CB1 100 Tripped by Relay1 Phase - OC1 - 51 3633 CB1 100 Tripped by Relay10 Overload Phase - Thermal <t< th=""><th></th><th>3-Phas</th><th>se (Symmetrical) f</th><th>ault on co</th><th>nnector betwe</th><th>en MI 2 & CT19. Adjacent bus: BARRA 4</th><th></th></t<>		3-Phas	se (Symmetrical) f	ault on co	nnector betwe	en MI 2 & CT19. Adjacent bus: BARRA 4					
Time (ms) ID If (kA) T1 (ms) T2 (ms) Condition 10,0 Relay9 14,786 10,0 Overload Phase - Instantaneous 110 CB10 100 Tripped by Relay9 Overload Phase - Instantaneous 123 Relay7 12,067 123 Phase - OC1 - 51 127 Fuse2 14,786 83,3 127 223 CB12 100 Tripped by Relay7 Phase - OC1 - 51 392 Relay3 2,194 392 Phase - OC1 - 51 492 CB5 100 Tripped by Relay3 Phase - OC1 - 51 1715 Relay1 1,856 1715 Phase - OC1 - 51 1815 CB2 100 Tripped by Relay3 Phase - OC1 - 51 1815 CB2 100 Tripped by Relay1 Phase - OC1 - 51 3633 CB1 100 Tripped by Relay1 Phase - OC1 - 51 3633 CB1 100 Tripped by Relay1 Phase - OC1 - 51 3633 CB1 100 Tripped by Relay1 Phase - OC1 - 51 3633 CB1 1			Data David Data		Carlina Maria	- Date: 00.10.0015					
Time (ms) ID If (kA) T1 (ms) T2 (ms) Condition 10,0 Relay9 14,786 10,0 Overload Phase - Instantaneous 110 CB10 100 Tripped by Relay9 Overload Phase - Instantaneous 123 Relay7 12,067 123 Phase - OC1 - 51 127 Fuse2 14,786 83,3 127 223 CB12 100 Tripped by Relay7 Phase - OC1 - 51 392 Relay3 2,194 392 Phase - OC1 - 51 492 CB5 100 Tripped by Relay3 Phase - OC1 - 51 1715 Relay1 1,856 1715 Phase - OC1 - 51 1815 CB2 100 Tripped by Relay1 Phase - OC1 - 51 1815 CB2 100 Tripped by Relay1 Phase - OC1 - 51 3633 CB1 100 Tripped by Relay1 Phase - OC1 - 51 3633 CB1 100 Tripped by Relay1 Phase - OC1 - 51 3633 CB1 100 Tripped by Relay1 Phase - OC1 - 51 3633 CB1 1			Data Rev.: base		Coning: Norn	a Date: 30-10-2015					
10,0 Relay9 14,786 10,0 Overload Phase - Instantaneous 110 CB10 100 Tripped by Relay9 Overload Phase - Instantane 123 Relay7 12,067 123 Phase - OC1 - 51 127 Fuse2 14,786 83,3 127 223 CB12 100 Tripped by Relay7 Phase - OC1 - 51 392 Relay3 2,194 392 Phase - OC1 - 51 492 CB5 100 Tripped by Relay3 Phase - OC1 - 51 1715 Relay1 1,856 1715 Phase - OC1 - 51 1815 CB2 100 Tripped by Relay1 Phase - OC1 - 51 1815 CB2 100 Tripped by Relay1 Phase - OC1 - 51 3633 CB1 100 Tripped by Relay1 Phase - OC1 - 51 3633 CB1 100 Tripped by Relay0 Phase - OC1 - 51 8492 Relay10 1,68 8492 Overload Phase - Thermal 8592 CB11 100 Tripped by Relay0 Overload Phase - Thermal 15453 Relay8 1,054 15453 Overload Phase - Thermal 15553 CB	Time (ms)	ID	If (kA)	T1 (ms)	T2 (ms)	Condition					
110 CB10 100 Tripped by Relay9 Overload Phase - Instantane 123 Relay7 12,067 123 Phase - OC1 - 51 127 Fuse2 14,786 83,3 127 223 CB12 100 Tripped by Relay7 Phase - OC1 - 51 392 Relay3 2,194 392 Phase - OC1 - 51 492 CB5 100 Tripped by Relay3 Phase - OC1 - 51 1715 Relay1 1,856 1715 Phase - OC1 - 51 1815 CB2 100 Tripped by Relay3 Phase - OC1 - 51 3633 CB1 100 Tripped by Relay1 Phase - OC1 - 51 3633 CB1 100 Tripped by Relay1 Phase - OC1 - 51 3633 CB1 100 Tripped by Relay1 Phase - OC1 - 51 8492 Relay10 1,68 8492 Overload Phase - Thermal 8592 CB11 100 Tripped by Relay10 Overload Phase - Thermal 15453 Relay8 1,054 15453 Overload Phase - Thermal 15553 CB9 100	10,0	Relay9	14,786	10,0		Overload Phase - Instantaneous					
123 Relay7 12,067 123 Phase - OC1 - 51 127 Fuse2 14,786 83,3 127 223 CB12 100 Tripped by Relay7 Phase - OC1 - 51 392 Relay3 2,194 392 Phase - OC1 - 51 492 CB5 100 Tripped by Relay3 Phase - OC1 - 51 1715 Relay1 1,856 1715 Phase - OC1 - 51 1815 CB2 100 Tripped by Relay1 Phase - OC1 - 51 3633 Relay0 1,856 3533 Phase - OC1 - 51 3633 CB1 100 Tripped by Relay1 Phase - OC1 - 51 3633 CB1 100 Tripped by Relay0 Phase - OC1 - 51 8492 Relay10 1,68 8492 Overload Phase - Thermal 8592 CB11 100 Tripped by Relay10 Overload Phase - Thermal 15453 Relay8 1,054 15453 Overload Phase - Thermal 15553 CB9 100 Tripped by Relay2 Overload Phase - Thermal 30961 Relay2 0,35 30961 Phase - OC1 - 51 31061 CB4	110	CB10		100		Tripped by Relay9 Overload Phase - Instantane					
127 Fuse2 14,786 83,3 127 223 CB12 100 Tripped by Relay7 Phase - OC1 - 51 392 Relay3 2,194 392 Phase - OC1 - 51 492 CB5 100 Tripped by Relay3 Phase - OC1 - 51 1715 Relay1 1,856 1715 Phase - OC1 - 51 1815 CB2 100 Tripped by Relay1 Phase - OC1 - 51 3533 Relay0 1,856 3533 Phase - OC1 - 51 3633 CB1 100 Tripped by Relay0 Phase - OC1 - 51 3633 CB1 100 Tripped by Relay1 Phase - OC1 - 51 8492 Relay10 1,68 8492 Overload Phase - Thermal 8592 CB11 100 Tripped by Relay10 Overload Phase - Thermal 15453 Relay8 1,054 15453 Overload Phase - Thermal 15553 CB9 100 Tripped by Relay2 Overload Phase - Thermal 30961 Relay2 0,35 30961 Phase - OC1 - 51 31061 CB4 100 Tripped by Relay2 Phase - OC1 - 51 8521 Relay6 <	123	Relay7	12,067	123		Phase - OC1 - 51					
223 CB12 100 Tripped by Relay7 Phase - OC1 - 51 392 Relay3 2,194 392 Phase - OC1 - 51 492 CB5 100 Tripped by Relay3 Phase - OC1 - 51 1715 Relay1 1,856 1715 Phase - OC1 - 51 1815 CB2 100 Tripped by Relay3 Phase - OC1 - 51 3533 Relay0 1,856 3533 Phase - OC1 - 51 3633 CB1 100 Tripped by Relay0 Phase - OC1 - 51 8492 Relay10 1,68 8492 Overload Phase - Thermal 8592 CB1 100 Tripped by Relay0 Overload Phase - Thermal 15453 Relay8 1,054 15453 Overload Phase - Thermal 15553 CB9 100 Tripped by Relay8 Overload Phase - Thermal 30961 Relay2 0,35 30961 Phase - OC1 - 51 31061 CB4 100 Tripped by Relay2 Phase - OC1 - 51 8521 Relay6 0,734 83521 Overload Phase - Thermal	127	Fuse2	14,786	83,3	127						
392 Relay3 2,194 392 Phase - OC1 - 51 492 CB5 100 Tripped by Relay3 Phase - OC1 - 51 1715 Relay1 1,856 1715 Phase - OC1 - 51 1815 CB2 100 Tripped by Relay1 Phase - OC1 - 51 3533 Relay0 1,856 3533 Phase - OC1 - 51 3633 CB1 100 Tripped by Relay1 Phase - OC1 - 51 8492 Relay10 1,68 8492 Overload Phase - Thermal 8592 CB1 100 Tripped by Relay10 Overload Phase - Thermal 15453 Relay8 1,054 15453 Overload Phase - Thermal 15553 CB9 100 Tripped by Relay8 Overload Phase - Thermal 30961 Relay2 0,35 30961 Phase - OC1 - 51 31061 CB4 100 Tripped by Relay2 Phase - OC1 - 51 8521 Relay6 0,734 83521 Overload Phase - Thermal	223	CB12		100	00 Tripped by Relay7 Phase - OC1 - 51 92 Phase - OC1 - 51						
492 CB5 100 Tripped by Relay3 Phase - OC1 - 51 1715 Relay1 1,856 1715 Phase - OC1 - 51 1815 CB2 100 Tripped by Relay1 Phase - OC1 - 51 3533 Relay0 1,856 3533 Phase - OC1 - 51 3633 CB1 100 Tripped by Relay1 Phase - OC1 - 51 36492 Relay10 1,68 8492 Overload Phase - OC1 - 51 8492 Relay10 1,68 8492 Overload Phase - OC1 - 51 8592 CB11 100 Tripped by Relay10 Overload Phase - Thermal 15553 CB9 100 Tripped by Relay8 Overload Phase - Thermal 30961 Relay2 0,35 30961 Phase - OC1 - 51 31061 CB4 100 Tripped by Relay2 Phase - OC1 - 51 83521 Relay6 0,734 83521 Overload Phase - Thermal 35521 Relay6 0,734 83521 Overload Phase - Thermal	392	Relay3	2,194	392							
1715 Relay1 1,856 1715 Phase - OC1 - 51 1815 CB2 100 Tripped by Relay1 Phase - OC1 - 51 3533 Relay0 1,856 3533 Phase - OC1 - 51 3633 CB1 100 Tripped by Relay0 Phase - OC1 - 51 3633 CB1 100 Tripped by Relay0 Phase - OC1 - 51 8492 Relay10 1,68 8492 Overload Phase - Thermal 8592 CB11 100 Tripped by Relay10 Overload Phase - Thermal 15453 Relay8 1,054 15453 Overload Phase - Thermal 15553 CB9 100 Tripped by Relay8 Overload Phase - Thermal 30961 Relay2 0,35 30961 Phase - OC1 - 51 31061 CB4 100 Tripped by Relay2 Phase - OC1 - 51 8521 Relay6 0,734 83521 Overload Phase - Thermal 6552 CB4 000 Tripped by Relay2 Phase - OC1 - 51	492	CB5		100		Tripped by Relay3 Phase - OC1 - 51					
1815 CB2 100 Tripped by Relay1 Phase - OC1 - 51 3533 Relay0 1,856 3533 Phase - OC1 - 51 3633 CB1 100 Tripped by Relay0 Phase - OC1 - 51 8492 Relay10 1,68 8492 Overload Phase - Thermal 8592 CB1 100 Tripped by Relay0 Overload Phase - Thermal 15453 Relay8 1,054 15453 Overload Phase - Thermal 15553 CB9 100 Tripped by Relay8 Overload Phase - Thermal 30961 Relay2 0,35 30961 Phase - OC1 - 51 31061 CB4 100 Tripped by Relay2 Phase - OC1 - 51 85221 Relay6 0,734 83521 Overload Phase - Thermal	1715	Relay1	1,856	1715		Phase - OC1 - 51					
3533 Relay0 1,856 3533 Phase - OC1 - 51 3633 CB1 100 Tripped by Relay0 Phase - OC1 - 51 8492 Relay10 1,68 8492 Overload Phase - Thermal 8592 CB1 100 Tripped by Relay10 Overload Phase - Thermal 15453 Relay8 1,054 15453 Overload Phase - Thermal 15553 CB9 100 Tripped by Relay8 Overload Phase - Thermal 30961 Relay2 0,35 30961 Phase - OC1 - 51 31061 CB4 100 Tripped by Relay2 Phase - OC1 - 51 83521 Relay6 0,734 83521 Overload Phase - Thermal	1815	CB2		100		Tripped by Relay1 Phase - OC1 - 51					
3633 CB1 100 Tripped by Relay0 Phase - OCI - 51 8492 Relay10 1,68 8492 Overload Phase - Thermal 8592 CB11 100 Tripped by Relay10 Overload Phase - Thermal 15453 Relay8 1,054 15453 Overload Phase - Thermal 15553 CB9 100 Tripped by Relay8 Overload Phase - Thermal 30961 Relay2 0,35 30961 Phase - OC1 - 51 31061 CB4 100 Tripped by Relay2 Phase - OC1 - 51 85221 Relay6 0,734 83521 Overload Phase - Thermal	3533	Relay0	1,856	3533		Phase - OC1 - 51					
8492 Relay10 1,68 8492 Overload Phase - Thermal 8592 CB11 100 Tripped by Relay10 Overload Phase - Thermal 15453 Relay8 1,054 15453 Overload Phase - Thermal 15553 CB9 100 Tripped by Relay8 Overload Phase - Thermal 30961 Relay2 0,35 30961 Phase - OC1 - 51 31061 CB4 100 Tripped by Relay2 Phase - OC1 - 51 83521 Relay6 0,734 83521 Overload Phase - Thermal	3633	CB1		100		Tripped by Relay0 Phase - OC1 - 51					
8592 CB11 100 Tripped by Relay10 Overload Phase - Thermal 15453 Relay8 1,054 15453 Overload Phase - Thermal 15553 CB9 100 Tripped by Relay8 Overload Phase - Thermal 30961 Relay2 0,35 30961 Phase - OC1 - 51 31061 CB4 100 Tripped by Relay2 Phase - OC1 - 51 85521 Relay6 0,734 83521 Overload Phase - Thermal	8492	Relay10	1,68	8492		Overload Phase - Thermal					
15453 Relay8 1,054 15453 Overload Phase - Thermal 15553 CB9 100 Tripped by Relay8 Overload Phase - Thermal 30961 Relay2 0,35 30961 Phase - OC1 - 51 31061 CB4 100 Tripped by Relay2 Phase - OC1 - 51 83521 Relay6 0,734 83521 Overload Phase - Thermal	8592	CB11		100		Tripped by Relay10 Overload Phase - Thermal					
15553 CB9 100 Tripped by Relay8 Overload Phase - Thermal 30961 Relay2 0,35 30961 Phase - OC1 - 51 31061 CB4 100 Tripped by Relay2 Phase - OC1 - 51 83521 Relay6 0,734 83521 Overload Phase - Thermal Coverload Phase Coverload Phase - Thermal Coverload Phase - Thermal Coverload Phase - Thermal	15453	Relay8	1,054	15453		Overload Phase - Thermal					
30961 Relay2 0,35 30961 Phase - OC1 - 51 31061 CB4 100 Tripped by Relay2 Phase - OC1 - 51 83521 Relay6 0,734 83521 Overload Phase - Thermal 2000 CP 100 Tripped by Relay2 Phase - OC1 - 51	15553	CB9		100		Tripped by Relay8 Overload Phase - Thermal					
31061 CB4 100 Tripped by Relay2 Phase - OC1 - 51 83521 Relay6 0,734 83521 Overload Phase - Thermal 2002 CP CP CP CP	30961 Relay2 0,35 30961		30961		Phase - OC1 - 51						
83521 Relay6 U,734 83521 Overload Phase - Thermal	31061	CB4		100		Tripped by Relay2 Phase - OC1 - 51					
The second	83521	Relay6	0,734	83521		Overload Phase - Thermal					
83621 CB8 100 Tripped by Relay6 Overload Phase - Thermal	83621	CB8		100		Tripped by Relay6 Overload Phase - Thermal					

Tabla 4.12: Secuencia y tiempo de operación de las protecciones

Así, en la Figura 4.12 se presenta la carta de coordinación, estableciendo la correcta operación de las protecciones para esta condiciona de falla.

Figura 4.12: Carta de coordinación

4.3.7 Análisis de falla trifásica motor de inducción MI3

Referente al diagrama unilineal de la Figura 4.13 se puede visualizar la operación de las protecciones CB11, F1, CB12, CB5, CB2,CB1 y sus corrientes de falla correspondiente, con respecto a la falla analizada en motor de inducción MI3.

Figura 4.13: Falla trifásica en motor de inducción MI3

En relación a la información de la Tabla 4.13, para la falla trifásica en motor de inducción MI2, el relé R10 detecta la corriente de falla, dando la señal al interruptor CB11, eliminando el aporte de la red eléctrica y de los motores MS, MI2 y MI3 a la falla en motor de inducción MI3.

	Sequence	e-of-Ope	ration Events	Output	t Repoi	rt: coci		×					
		3-Pha:	se (Symmetrical) f	ault on coi	nnector l	between	MI 3 & CT20. Adjacent bus: BARRA 4	_					
ľ			Data Rev.: Base		Config:	Normal	Date: 30-10-2015						
	Time (ms)	ID	If (kA)	T1 (ms)	T2 ((ms)	Condition						
	10,0	Relay10	13,978	10,0			Overload Phase - Instantaneous						
	110	CB11		100			Tripped by Relay10 Overload Phase - Instantan						
	123 Relay7 150 Fuse1		12,067	123			Phase - OC1 - 51						
			13,978	99,5	150								
	223 CB12			100			Tripped by Relay7 Phase - OC1 - 51						
	392	Relay3	2,194	392 100 1715			Phase - OC1 - 51						
	492	CB5					Tripped by Relay3 Phase - OC1 - 51						
	1715	Relay1	1,856				Phase - OC1 - 51						
	1815	CB2		100			Tripped by Relay1 Phase - OC1 - 51						
	3533	Relay0	1,856	3533			Phase - OC1 - 51						
	3633	CB1		100			Tripped by Relay0 Phase - OC1 - 51						
	6185	Relay9	0,868	6185			Overload Phase - Thermal						
	6285	CB10		100			Tripped by Relay9 Overload Phase - Thermal						
	15453	Relay8	1,054	15453			Overload Phase - Thermal						
	15553	CB9		100			Tripped by Relay8 Overload Phase - Thermal						
	30961	Relay2	0,35	30961			Phase - OC1 - 51						
	31061	CB4		100			Tripped by Relay2 Phase - OC1 - 51						
	83521	Relay6	0,734	83521			Overload Phase - Thermal						
	83621	CB8		100			Tripped by Relay6 Overload Phase - Thermal						

Tabla 4.13: Secuencia y tiempo de operación de las protecciones

Así, en la Figura 4.14 se presenta la carta de coordinación, estableciendo la correcta operación de las protecciones para esta condiciona de falla.

Figura 4.14: Carta de coordinación

4.3.8 Análisis de falla trifásica en barra 5

Referente al diagrama unilineal de la Figura 4.15 se puede visualizar la operación de las protecciones CB12, CB5, CB2, CB1 y sus corrientes de falla correspondiente, con respecto a la falla analizada en barra 5.

Figura 4.15: Falla trifásica en barra 5

En relación a la información de la Tabla 4.14, para la falla trifásica en la barra 5, el relé R4 detecta la corriente de falla, dando la señal al interruptor CB6, eliminando el aporte de la red eléctrica y de los motores MS, MI1,MI2 y MI3 a la falla en barra 5.

Sequenc	e-of-Ope	ration Events	- Output	t Report: coci		×			
		3.	Phase (Sy	mmetrical) fault o	n bus: BARRA 5				
I		Data Rev.: Base	•	Config: Normal	Date: 30-10-2015				
Time (ms) ID If (kA) T1 (ms)		T1 (ms)	T2 (ms)	Condition					
509 609	Relay4 CB6 Relay1	1,24	509 100		Phase - OC1 - 51 Tripped by Relay4 Phase - OC1 - 51				
10245 10345 21391	45 Relay1 0,967 1024 45 CB2 100 01 Delay0 0.067 2120		10245 100 21391		Phase - OC1 - 51 Tripped by Relay1 Phase - OC1 - 51 Phase - OC1 - 51				
21491	CB1	5,507	100		Tripped by Relay0 Phase - OC1 - 51				

Tabla 4.14: Secuencia y tiempo de operación de las protecciones

Así, en la Figura 4.16 se presenta la carta de coordinación, estableciendo la correcta operación de las protecciones para esta condiciona de falla.

Figura 4.16: Carta de coordinación

4.3.8 Análisis de falla trifásica en barra 6

Referente al diagrama unilineal de la Figura 4.17 se puede visualizar la operación de las protecciones CB3, CB7, CB2, CB1 y sus corrientes de falla correspondiente, con respecto a la falla analizada en barra 5.

Figura 4.17: Falla trifásica en barra 6

En relación a la información de la Tabla 4.15, para la falla trifásica en la barra 6, el relé R5 detecta la corriente de falla, dando la señal al interruptor CB7, eliminando el aporte de la red eléctrica y de los motores MS, MI1, MI2 y MI3 a la falla en barra 6.

🔲 Sequer	nce-of-Ope	eration Events	- Output	Report: coci		
		3-	Phase (Sy	mmetrical) fault o	n bus: BARRA 6	
	Date: 30-10-2015					
Time (ms) ID	If (kA)	T1 (ms)	T2 (ms)	Condition	
60,0 435 535 10088 10188 21059 21159	CB3 Relay5 CB7 Relay1 CB2 Relay0 CB1	41,106 1,246 0,972 0,972	20,0 435 100 10088 100 21059 100	60,0	Phase Phase - OC1 - 51 Tripped by Relay5 Phase - OC1 - 51 Phase - OC1 - 51 Tripped by Relay1 Phase - OC1 - 51 Phase - OC1 - 51 Tripped by Relay0 Phase - OC1 - 51	

Tabla 4.15: Secuencia y tiempo de operación de las protecciones

Así, en la Figura 4.18 se presenta la carta de coordinación, estableciendo la correcta operación de las protecciones para esta condiciona de falla.

Universidad del Bío-Bío. Sistema de Bibliotecas – Chile

Capítulo V

Comentarios y Conclusiones

Capítulo V: Comentarios y Conclusiones

5.1 Comentarios y conclusiones

A través de nuestro seminario fue posible realizar distintos tipos de estudios, que fueron: cálculos de líneas aéreas, cortocircuitos y operación de protecciones mediante el software y cálculos aprendidos en los distintos años de estudios. Para esto nos abocamos en el estudio eléctrico de la Planta de celulosa "Rio Bravo".

En primera instancia se comienza con el levantamiento de componentes, cálculos de datos técnicos, características principales de los distintos dispositivos y cables aéreos. Determinados y definidos los elementos se realiza diagrama de la red eléctrica utilizando el software ETAP 6.0.

Con los parámetros analizados se procede a realizar cálculos eléctricos y mecánicos de la línea aérea para determinar el tipo y sección del conductor y por otro lado la soportación del conductor .

Además, con los parámetros obtenidos en un inicio, se procede con los cálculos de cortocircuitos trifásicos para la estimación de cada falla de la red eléctrica en estudio y sus respectivos aportes, para luego realizar la comparación con el software ETAP 6.0, lo que se describe en el capítulo III.

Para el estudio y coordinación de las protecciones se consideran los ajustes obtenidos en terreno, para ser ingresados en el software ETAP 6.0 e iniciar el estudio aplicando fallas en cada barra en estudio, y así observar la secuencia de cada protección en lo que se describe en el capítulo IV, donde se adjuntan tablas de registros, cartas de coordinación y por último cada diagrama con las secuencia de operación.

De los datos obtenidos en terreno podemos observar cada una de las situaciones y acotar que las protecciones existentes en sus mayorías los ajustes son favorables, se recomienda a futuro realizar modificaciones en los tiempos de operación, para mayor eficiencia de los equipos. Para la falla trifásica en barra 3 se recomienda realizar ajustes entre R6 y R2 debido que R6 es el cuarto componente en actuar, siendo que debiera ser el primero, por esto, se debe modificar el pick up de la unidad 50 del relé Multilin 469.

Para terminar podemos decir que el tiempo invertido en el desarrollo de nuestra tesis nos entregó una valiosa experiencia, puesto que se utilizó los conocimientos adquiridos en el proceso de nuestra formación académica complementado con la experiencia laboral y metodologías informáticas.

Universidad del Bío-Bío. Sistema de Bibliotecas – Chile

Anexo A Tablas normalizadas

Anexo A: Tablas normalizadas

A.1 Tablas normalizadas

Size o Conduc	l lor	Stracels	Dinm- cier of	Out-	Brenking	Weicht	Ap- proz. Cur- rent	Gen- metric Menn		E.	Ohma :	ILF-si ber Con	r: slanen uluctor	per Mi	10)	Induc	Ta live Re per Co	aclance	Ohun H M	x.' al Capa leastan czohma	uitira to per
Circular U.y		ber of	Indi- vidual Strands	Diam- eter Inches	Strength Pounds	per Mile	Carry ing Capac	At 60 Cycles		25°C.	(77*F.)		50°C. (122°F.)				At 1 FL Spacing			Per Mile At 1 Ft Spacing		
Mils	A.W.	Num	Inches		-		Amps	A	d-¢	25 cycles	50 cycles	60 cycles	d-c	23 cycles	50 cyclca	60 cyclea	2.5 cycles	50 cycles	60 cycles	25 cyclon	50 eyeles	60 cycles
000 000 900 000 800 000 750 000		37 37 37 37	0.1644 0.1560 0.1470 0.1424	1.151 1.092 1.029 0.997	43 830 30 510 35 120 33 400	16 300 14 670 13 010 12 230	1 300 1 220 1 130 1 090	0,0363 0.0340) 0.0329 0.0310	0.058 0.005 0.073 0.073	0.050 0.065/ 0.0739 0.0787	0.062	0,0634 0,0694 0,0772 0,0818	0.014 0.071 0.080 0.035	00.0648 10.0718 10.0806 10.0806	0.0072 0.0740 0.0820 0.0875	0.0085 0.0752 0.0837 0.0888	0.1660 0.1693 0.1722 0.1730	0.333 0.330 0.344 0.348	0.400 0.405 0.413 0.417	0.216 0.220 0.221 0.225	0,1051 0,1100 0,1121 0,1132	0,020 0,091 0,093 0,094
700 000 600 000 *00 000 00 000		37 37 37 37	0,1375 0,1273 0,1162 0,1622	0.963 0.891 0.814 0.814	31 170 27 020 22 510 21 590	11 410 0 781 8 151 8 151	1 040 040 840 840	0.0308 0.0285 0.0260 0.0250	0.083/ 0.097/ 0.117/ 0.117/	0.0512	0.036 0.036 0.1188 0.1188	0,0371 0,1006 0,1196 0,1196	0.001- 0.106/ 0.123/ 0.128/	10.0020 10.1071 10.1231 10.1283	0.0937 0.1086 0.1296 0.1296	0,0947 0,1095 0,1303 0,1303	0.1759 0.1799 0.1845 0.1853	0.352 0.360 0.360 0.371	0.422 0.432 0.443 0.445	0.229 0.235 0.241 0.241	0.1145 0.1173 0.1205 0.1206	0.003 0.097 0.100 0.100
430 000 400 000 350 000 350 000		19 19 19 12	0,1539 0,1451 0,1357 0,1708	0.770 0.720 0.679 0.710	19 750 17 560 15 590 15 140	7 336 6 521 5 706 5 706	730 730 070 670	0.0243 0.0220 0.0214 0.0225	0.1300 0.1463 0.1671 0.1671	0,1304 0,1467 0,1675 0,1675	0.1310 0.1473 0.168 0.168	0.1323 0.1131 0.1090 0.1090	0.142 0.160 0.182 0.182	20,1426 20,1603 20,1831 20,1831	0.1437 0.1613 0.1840 0.1840	0.1443 0.1619 0.1845 0.1845	0.1379 0.1009 0.1943 0.1918	0.376 0.382 0.389 0.384	0.451 0.458 0.466 0.460	0.245 0.240 0.254 0.251	0,1274 0,1215 0,1269 0,1253	0.102
300 000 300 000 250 000 250 000		19 12 10 12	0,1257 0,1581 0,1147 0,1443	0.629	13 510 13 170 11 300 11 130	4 801 4 801 4 076 4 076	610 610 540 540	0.01937 0.0208 0.01813 0.01902	0,1050 0,1050 0,234 0,234	0.1953 0.1953 0.234 0.234	0,1041 0,1961 0,235 0,235	0,1966 0,1966 0,235 0,235	0.213 0.213 0.250 0.250	0,214 0,214 0,256 0,250	0.214 0.214 0.257 0.257	0.215 0.215 0.257 0.257	0.1082 0.1057 0.203 0.200	0.300 0.302 0.404 0.401	0.476 0.470 0.487 0.481	0.250 0.250 0.266 0.203	0.1298 0.1231 0.1329 0.1313	0 108 0.106 0.110 0.110
4 1 600 11 600 211 600 167 800	4/0 4/0 4/0 3/0	19 12 712	0.1055 0.1028 0.1739 0.1739	1.523 1.552 1.522 1.522	9 617 9 483 0 154 7 650	3 450 3 450 3 450 2 736	480 490 490 420	0.01663 0.01760 0.01679 0.01559	0.270 0.270 0.270 0.349	0.277 0.277 0.277 0.340	0.277 0.277 0.277 0.277 0.340	0.278 0.278 0.278 0.350	0.302 0.302 0.302 0.381	0.303 0.303 0.303 0.331	0.303 0.303 0.303 0.382	0.303 0.303 0.303 0.382	0.207 0.205 0.210 0.210	0.414 0.410 0.420 0.421	0.497 0.401 0.503 0.605	0.272 0.200 0.273 0.277	0,1350 0,1343 0,1363 0,1384	0.113 0.111 0.113 0.113
167 800 133 100 105 500 83 690	3/0 2/0 1/0 1	7077	0:1548 0.1379 0.1223 0.1093	0.404 0.414 0.368 0.328	7 366 5 920 4 762 3 801	2 736 2 170 1 720 1 301	420 360 310 270	0.01404 0.01252 0.01113 0.00902	0.349 0.440 0.565 0.609	0.342 0.440 0.555 0.600	0.340 0.440 0.555 0.600	0.350 0.410 0.555 0.600	0.331 0.431 0.000 0.705	0.381 0.481 0.007	0.382 0.481 0.607	0.382 0.481 0.607	0.210 0.222 0.227 0.233	0.431 0.443 0.455 0.407	0.518 0.532 0.546 0.560	0.231 0.280 0.298 0.298	0.1405 0.1445 0.1485 0.1528	0.117 0.120 0.124 0.124
83 610 66 370 66 370 66 370	12222	3070	0.1670	0.360 0.202 0.320 0.258	3 020 3 045 2 913 3 003	1 351 1 067 1 071 1 061	270 230 240 220	0.01016	1.692 1.891 1.973 1.864	0.692 0.882	0.602 0.882	0.692 0.882	0.757 0.964 0.955 0.945		•		0.212 0.230 0.238 0.242	0.464 0.478 0.478 0.470 0.484	0.557 0.574 0.571 0.581	0.200 0.314 0.307 0.323	0.1405 0.1570 0.1577 0.1537 0.1614	0.124 0.130 0.130 0.128 0.131
52 630 52 630 52 630 41 740	3334	700	0.0807 (0.1325 (0.1325 (0.260 0.283 0.229 0.264	2 433 2 330 2 439 1 870	853 850 811 674	200 200 100 180	0.00787 0.00303 0.00746 0.00746	1.112 1.101 1.000 1.333	Ba	ma na (l-n	1.216 1.204 1.102 1.618	. En	mó na d	-0	0.245	0.400 0.488 0.400 1.400	0.588 0.585 0.505 0.500	0.322 0.310 0.331 0.331	0.1611 0.15730 0.16560 0.16560), 134), 131), 138), 134
41 740 33 100 33 100 20 250	4550	1310	1050	.201 .226 .1910 .201	1 979 1 505 1 591 1 295	667 634 529 424	170 150 140 130	0.00663 0.00633 0.00590 0.00568	.374 .750 .733 .21				1.503 1.914 1.805 2.41		5		0.254 0.256 0.260 0.260	0.507 0.511 0.519 0.623	0.609	0.339 0.332 0.318 0.311	0.1697 (0.1661 (0.1738 (0.1738 (), 141), 133), 141), 141
20 250 20 820 10 510	6 7 8	1.		. 1620 . 1413 . 1255	1 230 1 030 320	420 333 261	120 110 90	0.00520 0.00468 1.00417	2.18				2.39				0.205 0.271 0.277	0.531 0.542 0.554	0.637 0.651 0.665	0.350 0.364 0.372	0.17790 0.18210 0.18020	1.148

Tabla A.1: Características de conductores de cobre.

Tabla normalizada en referencia a las especificaciones técnicas de conductores para cálculo eléctrico en punto 2.2.3 capítulo II para el desarrollo de selección de conductor.

A.2 Tablas normalizadas

Tabla A.2: Reactancia inductiva Xa en Ω / cond./ milla.

Tabla normalizada en referencia al diámetro medio geométrico ocupado para cálculo eléctrico en punto 2.2.3 capítulo II para el desarrollo de selección de conductor.
A.3 Tablas normalizadas

V/s	Y/s	f/s	1/s	V/s	Y/s	f/s	Vs
Factor de tonsión horizontai	Factor de tensión	Flecha Uniteria	Longitad Unitaria	Factor de Lonsión horizontal	Factor de tensión	Flocks Sultaria	Lengibsi Dalinska
100,0000	100,0013	0,001250	1,0000042	6,2500	6,2700	0,02001	1,001065
90,9091	90,9105	0,001375	1,0000051	5,8824	5,9036	0,02126	1,001205
83,3333	83,3348	0,001500	1,0000061	5,5555	5,5781	0,02252	1,001351
76,9231	76,9247	0,001625	1,0000071	5,2632	5,2869	0,02377	1,001503
71,4286	71,4303	0,001750	1,0000082	5,0000	5,0250	0,02502	1,001668
66,6667	66,6685	0,001875	1,0000094	4,7619	4,7882	8,02627	1,001839
62,5000	62,5020	0,002000	1,0000107	4,5455	4,5730	0,02753	1,002017
58,8235	58,8257	0,002125	1,0000120	4,3478	4,3766	0,02878	1,002205
55,5555	55,5578	0,002250	1,0000135	4,1667	4,1967	0,03004	1,002402
52,6316	52.6339	0,002375	1,0000150	4,0000	4,0313	0,03129	1,002606
50,0000	50,0025	0,00250	1,000017	3,8462	3,8787	0,03255	1,002819
45,4545	45,4573	0,00275	1,000020	3,7037	3,7342	0,03380	1,00.3040
41,6667	41,6697	0,00300	1,000025	3,5714	3,6065	0,03506	1,003270
40,0000	40,0031	0,00313	1,000026	3,4483	3,4846	0,03631	1,003508
38,4615	38,4648	0,00325	1,000028	3,3333	3,3709	0.03757	1,003754
35,7143	35,7178	0,00350	1,000033	2,9412	2,9838	0,04260	1,004825
33,3333	33,3371	0,00375	1,000037	2,5000	2,5502	0,05017	1,006680
31,2500	31,2540	0,00400	1,000043	- 2,2727	2,3280	0,05522	1,008086
29,4118	29,4160	0,00425	1,000048	2,0000	2,0628	0,06283	1,010444
28.5714	28,5758	0,00438	1,000051	1,8519	1,9198	0,06791	1,012194
27,7777	27,7823	0,00450	1,000054	1,6667	1,7422	0,07556	1,015068
26,3158	26,3205	0,00475	1,000060	1,5625	1,6432	0,08063	1,017154
25,0000	25,0050	0,00500	1,000067	1,4286	1,5170	0,03840	1,020542
22,7273	22,7328	0,00550	1,000081	1,3514	1,4449	0,09356	1,022973
20.8333	20.8393	0,00600	1.000096	1.2500	1,3513	0.10134	1.026881
20,0000	20,0063	0,00625	1,000104	1,1905	1,2070	0,10655	1,029660
19,2308	19,2373	0,00650	1,000113	1,1111	1,2255	0,11441	1,034093
17,8571	17,8641	0,00700	1,000131	1,0638	1,1835	0.11968	1,037224
16,6667	16,6742	0,00750	1,000150	1,0000	1,1276	0,12763	1,04219
15,6250	15,6330	0,00800	1,000171	0.9091	1.0501	0.14100	1,05119
14,7059	14,7144	0,00850	1,000193	0,8333	0,9879	0,15455	1,06109
13,8889	13,8079	0,00900	1,000216	0,7143	0,8965	0,1:8226	1,08369
13,1579	13,1674	0,00950	1,000241	0,6250	0,8358	0,21083	1,11013
12.5000	12,5100	0,01000	1,000267	0,5555	. 0,7962	0.24061	1,14057
11.6279	11,6387	0.01075	1,000308	0,5000	0,77154	0.27154	1.17520
10,6383	10,6501	0,01175	1,000368	0,4545	0,75842	0.30387	1,21423
10.0000	10.0125	0,01250	1,000417	0,4167	0,75444	0,33777	1.25788
9.0909	9,1047	0,01375	1,000504	0,3846	0,75804	0,37343	1.29645
8,3333	. 8,3483	0.01500	1.000600	0,3571	0,76818	0,41104	1.36921
7.6923	7.7084	0,01626	1.000704	0.3333	0.78414	0.45080	1.41952
7,1428	7,1604	0,91751	1,000817	0,3125	0,80546	0,49296	1,484,73
6.666?	6.6854	0.01876	1.000938			in a cinda	1

Tabla A.3: Tensiones y longitudes en función de la relación FLECHA-VANO.

Tabla normalizada en referencia a valores unitarios referente a relación de propiedades de conductores para cálculo mecánico en punto 2.3 capítulo II.

A.4 Tablas de conductores Madeco

Tabla A.4: Impedancia de los conductores.

CONST.		ESP.	DIAM.	ESP.	DIAM.	PESO		CORRIE	NTE MAX	IMA	REACT.	NDUCT.	
AWG Mm	NºHebras							A	MPERES		Ducto no		1
	Ømm	AISL	AISL. mm	CUB. mm	EXT. mm	APROX. Kg/Km	DUCTO t° 20°C	TIERRA t° 20°C	t° 40°C	BANDEJAS tº 40°C	magnet. Ohm/Km	Bandeja Ohm/Km	CAPACID. uF/Km
2	7 x 2,47	4,45	17,32	2,03	24,35	837	155	210	150		0,166		0,149
1	19 x 1,69	4,45	18,12	2,03	25,15	942	175	240	170		0,160		0,159
1/0	19 x 1.89	4.45	19.08	2.03	26,11	1.065	200	275	195	260	0,154	0,280	0,172
2/0	19 x 2.13	4.45	20,11	2.03	27,14	1.225	230	310	225	300	0,149	0,273	0,185
3/0	19 x 2.39	4.45	21.33	2.03	28,36	1,418	260	355	260	345	0,143	0,266	0,201
4/0	19 x 2.68	4.45	22.67	2.03	29,70	1.654	295	405	295	400	0,138	0,259	0,218
250	37 x 2.09	4.45	23.84	2.03	30,87	1.865	325	440	330	445	0,134	0,254	0,233
300	37 x 2.29	4.45	25.53	2.03	33,11	2.186	358	488	363	498	0,132	0,252	0,254
350	37 x 2.47	4.45	26,71	2.03	34,29	2.447	390	535	395	550	0,129	0,248	0,269
400	37 x 2.64	4.45	27.83	2.03	35,41	2.709	428	593	438	618	0,126	0,245	0,283
500	37 x 2,95	4,45	29,82	2,03	37,40	3.224	465	650	480	685	0,122	0,240	0,308
600	61 x 2.52	4,45	32,90	2,03	40,48	3.781	505	712	522	765	0,117	0,233	0,346
650	61 x 2.62	4.45	33,79	2,03	41,37	4.030	525	743	543	805	0,115	0,231	0,358
700	61 x 2.72	4,45	34,66	2,03	42,24	4.288	545	774	564	845	0,114	0,230	0,369
750	61 x 2.82	4.45	35,50	2.03	43,08	4.554	565	805	585	885	0,113	0,229	0,379
800	61 x 2,91	4,45	36,32	2,79	45,51	4.960	580	830	603	920	0,115	0,231	0,389
900	61 x 3,09	4.45	37,88	2,79	47.07	5.481	610	880	639	990	0,113	0,228	0,409
1000	61 x 3,25	4.45	39,31	2,79	49,03	6.015	640	930	675	1.060	0,112	0,227	0,427

MONOCONDUCTORES XAT 15 KV 100% NA

Tabla normalizada en referencia a las especificaciones técnicas de conductores MADECO para cálculo eléctrico en punto 2.2.3 capítulo III para el desarrollo de selección de conductor.

Universidad del Bío-Bío. Sistema de Bibliotecas – Chile

Anexo B

Descripción de los equipamientos de Protección en MT y BT

Anexo B: Descripción de los equipamientos de Protección en MT y BT

B.1 Relé multifunción SR 750

B.1.1 Descripción general

El relé SR750 de General Electric es un equipo digital diseñado para la gestión y protección de alimentadores de distribución, además, permite diseño para gestión y protección de respaldo para barra, transformadores y líneas de transmisión. El equipo registra la frecuencia del sistema de potencia y ajusta el rango de muestreo para mantener la precisión en todo momento. Este equipo está especialmente diseñado para ofrecer un sistema de gestión de alimentadores y cumple con todos los requisitos de protección, control, medida, así como interfaces de usuario locales y remotas. Es así, que en la Figura B.1 se presenta una vista frontal del relé, con una descripción general de las funciones del panel frontal del relé.

Figura B.1 Vista frontal de Relé SR 750

Por otro lado, en la Figura B.2 se presenta un diagrama esquemático de conexionado del relé.

Figura B.2 Diagrama de cableado

B.1.2 Funcionalidades del relé multifunción SR 750

El 750 proporciona una completa protección de sobre intensidad. Esta incluye protecciones para fase, neutro, tierra y secuencia inversa, para sobre intensidad temporizada e instantánea, además de control direccional, funciones de máxima tensión, mínima tensión y mínima frecuencia entre otros. Gracias a sus entradas y salidas lógicas programables, el relé SR 750 puede ser configurado fácilmente para las aplicaciones específicas. Así, en la Figura B.3 se muestran las principales funciones del relé SR 750.

		-	8	
		Tem 200		1.1
			S a la l	¥/
ANSI	PROTECCIÓN/CONTROL	Page 1		£/
27	Mínima tensión de barra/línea			
47	Tensión de secuencia Inversa			
50	S/I Inst. de fase/neutro/tierra/sec. Inversa/tierra sensible			
51	S/I temp. de fase/neutro/tierra/sec. inversa/tierra sensible			
59	Máxima tensión de barra/Desplazamiento de neutro			
67	Direccional de fase/neutro/sec. inversa/tierra/tierra sensible			
81	Mínima frecuencia de barra/Relación de cambio			
	Restauración automática de mínima tensión			1
	Restauración automática de mínima frecuencia			1
	Fallo de Interruptor con supervisión de corriente			
	Transferencia de Barras			1
	Entradas lógicas programables			
\square	Múltiples grupos de ajustes			
	MONITORIZACION/CONTROL	·		_
25	Comprobación de sincronismo			
50	Nivel de intensidad de fase/neutro	•••		
55	Factor de Potencia	••		
79	Autoreenganchador (sólo 760)	••		
81	Máxima frecuencia			
	Interruptor abierto/cerrado	•••	•••	
	Bioqueo de cierre manual	• • •		
	Bioqueo de arranque en frio	••		
	Fallo de Interruptor			
	Fallo de Interruptor Fallo de circuito de disparo / cierre			
	Fallo de Interruptor Fallo de circuito de disparo / cierre Intensidad de arco total del Interruptor			
	Fallo de Interruptor Fallo de circuito de disparo / cierre Intensidad de arco total del Interruptor Fallo de TT			
	Fallo de Interruptor Fallo de circuito de disparo / cierre Intensidad de arco total del Interruptor Fallo de TT Demanda (A, MW, Mvar, MVA)			
1 1	Fallo de Interruptor Fallo de circuito de disparo / cierre Intensidad de arco total del Interruptor Fallo de TT Demanda (A, MW, Mvar, MVA) Entrada analógica			
$\left - \right $	Fallo de Interruptor Fallo de circuito de disparo / cierre Intensidad de arco total del Interruptor Fallo de TT Demanda (A, MW, Mvar, MVA) Entrada analógica Registro de eventos			
	Fallo de Interruptor Fallo de circuito de disparo / cierre Intensidad de arco total del Interruptor Fallo de TT Demanda (A, MW, Mvar, MVA) Entrada analògica Registro de eventos Salida analògica			
	Fallo de Interruptor Fallo de circuito de disparo / cierre Intensidad de arco total del Interruptor Fallo de TT Demanda (A, MW, Mvar, MVA) Entrada analògica Registro de eventos Salida analògica Localizador de faltas			

Figura B.3 Principales funciones del relé SR750

B.1.3 Funciones de protección de sobre corriente

Si bien el relé presenta una gran variedad de funciones de protección, para los propósitos del presente seminario se describe las características de las funciones de protección de sobre corriente.

B.1.3.1 Sobre intensidad temporizada (51)

El relé dispone de elemento sobre intensidad temporizada de fase las que incluye detectores de nivel para cada fase. Asimismo, dispone de elementos de sobre intensidad temporizada de neutro y elemento de sobre intensidad temporizada diferente para tierra, tierra sensible, y secuencia inversa. Cada elemento de sobre intensidad temporizada posee características programables, empleando para ello cuatro familias de curvas, esto es:

- **Curvas ANSI:** Extremadamente inversa, Muy inversa, Normalmente inversa, moderadamente inversa y de tiempo definido.
- Curvas IEC: Curva A (BS142), curva B (BS142), curva C (BS142), inversa corta
- Curvas IAC: Extremadamente inversa, muy inversa, inversa e inversa corta
- Curvas Personalizadas : Flex Curve A y Flex Curve B

B.1.3.2 Sobre intensidad instantánea (50)

El 750 dispone de elementos de sobre intensidad instantánea de fase. Cada uno de ellos incluye detectores de nivel para cada fase. Así mismo, dispone de dos elementos de sobre intensidad instantánea de neutro, y un elemento de sobre intensidad instantánea diferente para tierra, tierra sensible y secuencia inversa. Cada uno de ellos dispone de intensidad de arranque programable, un periodo de tiempo durante el cual la corriente debe exceder el valor de arranque para el funcionamiento, y el número mínimo de fases necesarias para la maniobra.

B.1.3.3 Control directional

El control direccional de sobre intensidad de fase es necesario para la protección de alimentadores con fuente múltiple, cuando resulta imprescindible limitar el disparo del relé a faltas en una única dirección.

En el caso del direccional de neutro, la corriente residual de los transformadores de fase se utiliza como corriente de operación. Esta unidad puede ser polarizada por tensión, intensidad o ambas.

B.2 Relé Multifunción SR 469

B.2.1 Descripción General

El relé de protección de motores 469 está pensado para la protección de motores de media y alta potencia y equipos asociados. Se han integrado la protección de motor, diagnóstico de faltas, medida de potencia y funciones de comunicación. Este alto grado de integración permite la estandarización en un único relé de protección, independientemente de la aplicación. El fundamento del SR469 es el modelo térmico. Además de los elementos de protección de intensidad, dispone de entradas de RTD para protección de temperatura del estator y los rodamientos. Las entradas de tensión proporcionan los elementos de protección diferencial de fase. Todos los elementos de protección están incluidos en el relé y pueden ser habilitados. Este diseño hace sencilla la programación. Además, detecta el tiempo de aceleración, la intensidad de arranque y capacidad térmica requerida durante el arranque del motor. Si la carga del motor durante el arranque es relativamente constante, estos valores aprendidos pueden usarse para ajustar con precisión la protección de aceleración y puede también detectar la carga media del motor durante un periodo entre otros.

Figura B.4 Vista frontal de Relé SR 469

Por otro lado, en la Figura B.5 se presenta un diagrama esquemático de conexionado del relé.

Figura B.5 Diagrama de cableado

B.2.2 Funcionalidades del relé multifunción SR 469:

Aplicación de las funciones del SR469

El SR469 contiene una alta gama de protecciones propias, que se pueden habilitar individualmente y elementos de control como se detalla en la siguiente tabla.

151

				e/3	<u>ور / دی</u>
		1	2/ 4		\$/\$
ANSI		-	<u> </u>		
51	Sobrecarga				
86	Bloqueo por sobrecarga	\downarrow			
66	Tiempo de arranque y tiempo entre arranques				
	Bloqueo del rearranque				
50	Cortocircuito y respaldo del cortocircuito				
	Bloqueo mecánico				
37	Mínima intensidad/mínima potencia				
46	Desequilibrio de intensidades		\bullet		
50G/51G	Falta a tierra y respaldo de falta a tierra				
87	Diferencial				
	Aceleración				
49	RTD del estator				
38	RTD de los rodamientos				
	Otras RTD y RTD ambiente				
	Alarma temperatura RTD				
	Baja RTD				
27/59	Mínima/máxima tensión				
47	Inversión de fase				
81	Frecuencia			•	
	Potenica reactiva			•	
55/78	Factor de potencia	Ĭ			
	Entrada analógica				
	Alarma demanda: A kW kvar k VA			-	
	Autochequeo del SR469, servicio	+├──	ŏ		
	Supervisión de la bobina de disparo	1	ŏ		
	Contactor	1	ŏ		
	Fallo del interruptor	1	ŏ		
	Entrada remota		ŏ		
14	Entrada de velocidad y disparo por tacómetro		ŏ	•	
	Entrada de deslastre de cargas		-		
	Entrada de presión				
	Entrada de vibración	╡┟╧╴		-	\vdash
19	Arrangue a tensión reducida	┤┝┻	-	•	
48	Secuencia incompleta		$\left - \right $		
-10	Arrangue/paro remoto	╢┻	$\left - \right $	•	
	Dar				-
	Fai		-		

Figura B.6 Principales funciones del relé SR 469

La función fundamental de protección del SR469 es el modelo térmico que consiste en 4 elementos clave:

• Curvas de sobrecarga

La curva de sobrecarga del SR469 puede tomar uno de tres formatos: estándar, usuario o curvas dependientes de la tensión. Para cualquier tipo de curva el 469 guarda la memoria

térmica en un registro de capacidad térmica que se actualiza cada 0.1 segundos. El arranque por sobrecarga determina el comienzo de la curva de sobrecarga de funcionamiento.

Las curvas de sobrecarga consisten en una forma de estándar curva con un valor multiplicador de 1 a 15. Además, permite al usuario crear su propia curva de sobrecarga, como indica la Figura B.7.

• Desequilibrio

La intensidad de secuencia negativa, que tiene una rotación de fases inversa a la secuencia positiva y a la rotación del motor, puede inducir una tensión en el rotor que puede producir una intensidad elevada en el rotor.

Compensación de motor caliente/frío

La protección SR469 tiene una única función para proteger el motor basada en la información del comportamiento térmico en caliente y en frío suministrado por el fabricante del motor. Se construye una curva de dos partes con 3 puntos:

-Compensación mínima RTD:

-Compensación máx. RTD:

-Punto de compensación centro RTD:

• Constantes de enfriamiento del motor

El valor de capacidad térmica empleada se reduce exponencialmente cuando la intensidad del motor está por debajo del ajuste de arranque por sobrecarga. Esta reducción simula el enfriamiento del motor. Las constantes de tiempo de enfriamiento del motor se programan para motor parado y en funcionamiento, ya que normalmente un motor parado se enfría más lentamente que un motor en funcionamiento. Como el enfriamiento del motor es exponencial el modelo térmico seguirá los ciclos de calentamiento y enfriamiento de forma precisa.

B.3 Unidad micrologic 5.0

B.3.1 descripción general

Las unidades de control Micrologic están diseñadas para la protección de los circuitos de potencia y de las cargas asociadas, tienen la opción de integrar las medidas de tensiones, corrientes, frecuencia, potencia, energía, THD, Armónico individuales. Además permiten conocer el estado del interruptor y aperarlo remotamente vía comunicación. En este caso el micrologic 5.0 basara su funcionamiento en la protección de sobre intensidad temporizada e instantánea para un master pac NW40.

Figura B.11

B.3.2 Características de la Unidad de micrologic 5.0

En la Figura B.12 se puede apreciar un resumen de las funciones de la unidad de micrologic 5.0.

Protocciones											
Largo retardo	8	Micro	ologic 5	5.0/6.0)/7.0 A						
Umbral (A)	Ir = In X	0,4	0,5	0,6	0,7	0,8	0,9	0,95	0,98	1	
Disparo entre 1,05 a	1,20 lr	otros	umbra	les de i	reg. o a	nulació	n por c	ambio	del cali	brador	14 als in
Temporización (s)	tra1,5Xlr	12,5	25	50	100	200	300	400	500	600	T"
Precisión: 0 a - 20 %	tra6Xlr	0,5	1	2	4	8	12	16	20	24	
	tra7,2Xlr	0,34	0,69	1,38	2,7	5,5	8,3	11	13,8	16,6	1 X.
Memoria témica		20 mi	n. ante	s y dep	ués de	dispare	0		-		ked
Corto retardo											₩ ₩
Umbral (A)	lsd = Ir X	1,5	2	2,5	3	4	5	6	8	10	
Precisión: ±10 %											v ⇔li
Temporización (ms)	intervalos de reg. l²t Off	0	0,1	0,2	0,3	0,4					0
a 10 Ir	l²t On		0,1	0,2	0,3	0,4					
	tsd (no disparo)	20	80	140	230	350					
	tsd (max de corte)	80	140	200	320	500					
Instantáneo	, , , , , , , , , , , , , , , , , , , ,										
Umbral (A)	li = In X	2	3	4	6	8	10	12	15	off	
Precisión: ±10 %											**

Figura B.12

Universidad del Bío-Bío. Sistema de Bibliotecas – Chile