Universidad del Bío-Bío Facultad de Ingeniería Departamento de Ingeniería Mecánica

"Factibilidad técnica y económica de implementar un sistema de energía solar para el ahorro de combustible en el proceso de calentamiento de electrolito para la producción de cobre"

Informe de Habilitación Profesional presentado en conformidad a los requisitos para optar al Título de Ingeniero Civil Mecánico

Profesor Guía: Sr. Reinaldo Sánchez Arriagada

Sebastián Gutiérrez Feres

Concepción-Chile Mayo 2015

Sumario

El proyecto que contempla la "Factibilidad técnica y económica de implementar un sistema de energía solar para el ahorro de combustible en el proceso de calentamiento de electrolito para la producción de cobre", se desarrolló con las características de una planta productora de cobre, que utiliza el método de electroobtención, ubicada en el norte de Chile (Iquique).

El estudio pretende calentar un flujo de 8720 [m^3/h] desde la temperatura de 48[°C] a 49 [°C], por medio de un sistema de paneles solares térmicos con el fin de generar un ahorro de combustible en la caldera, que es el tipo de instalación actual de la planta.

Para lograr el objetivo, primero se determinó la demanda energética para el proceso de calentamiento de electrolito, el cual arrojo como resultado 113.360.240 [kWh] aproximadamente, para un año. Una vez obtenido este cálculo se procedió a determinar el costo de operación.

Para este sistema de paneles solares térmicos se utilizaron colectores solares planos (Chromagen PA-F) y con ellos se calculó el aporte solar mensual para un año, que arrojó como resultado 87.719.199,01 [kWh]. La diferencia de energía faltante para el normal funcionamiento de la planta en estudio, será aportada por el sistema actual de producción de energía (calderas a petróleo). De esta manera en conceptos de energía se logró un ahorro de 25.641.040 [kWh] anuales aproximadamente, lo que en términos de costos es aproximadamente 8.345.453,79 [USS] al año.

Una vez abarcada el área energética se procedió al diseño de la configuración del sistema de paneles solares térmicos. El número de colectores fue obtenido por medio del método de F-Chart que arrojo la cantidad de 85.000 colectores. Con ésta cantidad de colectores y sus dimensiones (ancho y alto) se procedió a calcular el área total a ocupar por lo paneles. Se consideró una separación mínima entre cada uno de ellos, según el reglamento de instalaciones térmicas en los edificios en Chile, llegando al resultado de agrupar 1100 paneles en un hectárea (parcela de paneles) y necesitando para el total de paneles 78 hectáreas aproximadamente de terreno.

Ya calculada el área a utilizar y determinada su disposición en el terreno, se procedió a calcular las pérdidas de carga en el sistema para dimensionar los equipos a utilizar y poder cotizarlos en el mercado.

Luego se realizó una evaluación económica del proyecto, evaluado en 20 años, empleando el "Análisis del ciclo de vida de instalaciones y sistemas norma ASTM E917". De esta manera se llevó los costos de la inversión, consumo de energía, mantenimiento, etc., a un valor presente y así se estimó el precio de producir energía durante este periodo. Utilizando el sistema actual, el costo de producir energía durante los 20 años es de 150.251.744,70 [US\$], mientras que utilizando el sistema de paneles solares térmicos da como resultado un costo de implementación y producción de energía de 131.398.959,98 [US\$].

De ésta manera se concluyó, a través de los resultados obtenidos, que la implementación del sistema de paneles solares térmicos es totalmente conveniente, tomando las consideraciones mencionadas en el texto, ya que presentó un menor costo durante el período de evaluación.

Índice

I. Introducción	7
II. Objetivos	9
Objetivos Generales:	9
Objetivos Específicos:	9
III. Consumo energético minería	10
IV. Evaluación Técnica	11
1. Descripción del Proyecto	11
2. Energía Solar	17
2.1 Introducción a la Energía Solar	17
2.2 Índice de transparencia atmosférica (ITA)	20
2.3 Análisis Recurso Solar En Chile	21
2.4 Tecnologías de captación Solar	26
2.5 Esquema sistema de paneles solares	32
2.6 Método de cálculo F-Chart	33
3. Cálculos	36
3.1 Consumo energético de agua caliente para calentamiento de electrolito	36
3.2 Consumo de energía calentamiento electrolito	39
3.3 Aporte Solar Mensual	46
3.4 Rendimiento Colector Solar	47
3.5 Radiación Acumulada Mensual	49
3.6 Radiación Útil Mensual	50
3.7 Carta F	51
3.8 Aporte solar mensual	53
3.9 Aporte de combustible mensual utilizando paneles solares	54
3.10 Costo Combustible	55
3.11 Ahorro	56
4. Distancia mínima entre colectores solares	57
5. Pérdidas de Carga	61
5.1 Fluido real	61

5.2 Cálculo de pérdidas para diferentes números de colectores	65
5.3 Cálculos Pérdidas en Cañería	69
6 Potencia de la bomba	
7 Elección bomba Recirculadora Agua-glicol	79
8 Elección bomba alimentación I.C.E.	80
9 Intercambiadores de Calor	81
V Evaluación Económica	82
VI Discusión y Conclusión	86
VI Bibliografía	
Anexos	

Índice Gráficos

- 1. III.1 Evolución del precio del petróleo diésel entre años 1994 y 2014
- 2. IV_2.1 Irradiancia global horizontal promedio de cada mes
- 3. IV_2.2 Porcentaje mensual promedio de albedo en la zona del proyecto
- 4. IV_2.3 Porcentaje mensual promedio de nubosidad en la zona del proyecto
- 5. IV_2.4 Promedio mensual de temperaturas en la zona del proyecto
- 6. IV_2.5 Promedio mensual de la velocidad del viento para la zona del proyecto
- 7. IV_2.6 Curva rendimiento térmico del panel solar
- 8. IV_3.1 Demanda mensual de energía
- 9. IV_3.2 Demanda mensual de energía para calentamiento de electrolito
- 10. IV_3.3 Rendimiento colector
- 11. IV_3.4 Radiación acumulada mensual
- 12. IV_3.5 Radiación útil mensual
- 13. IV_3.6 Aporte de combustible, aporte solar y consumo de energía calentamiento electrolito.

Índice figuras

- 14. IV_1.1. Diagrama de flujos de procesos de distribución de agua caliente
- 15. IV_1.2 Diagrama de flujos de procesos estanque de electrolito
- 16. IV_1.3 Diagrama modelo solar térmico a implementar
- 17. IV_2.1 Representación radiación directa, radiación difusa y radiación reflejada
- 18. IV_2.2 Radiación directa y difusa con respecto a un plano inclinado óptimo
- 19. IV_2.3 Irradiancia global horizontal promedio
- 20. IV_2.4 Mapa de radiación solar
- 21. IV_2.5 Sistemas de captación para el aprovechamiento de la energía solar
- 22. IV_2.6 Colector solar tubo de vacío
- 23. IV_2.7 Colector solar de placa plana
- 24. IV_2.8 Esquema configuración sistema solar térmico
- 25. IV_3.1 Cálculo temperatura de salida electrolito desde el intercambiador de calor
- 26. IV_4.1 Distancia entre colectores solares
- 27. IV_4.2 Arreglo colectores en paralelo con manifold externo con balanceo por retorno invertido
- 28. IV_4.3 Separación entre colectores
- 29. IV_5.1 Régimen laminar y turbulento
- 30. IV_5.2 Rugosidad superficial de distintos materiales
- 31. IV_5.3 Ábaco de Moody
- 32. IV_5.4 Configuración hectáreas de paneles solare

Índice de Tablas

- 33. IV_1.1 Datos de flujos de distribución agua caliente.
- 34. IV_1.2 Datos de flujos de procesos de distribución de electrolito
- 35. IV_1.3 Propiedades de flujos sistema solar térmico.
- 36. IV_2.1 Evaluación de cielos según índice de transparencia atmosférica
- 37. IV_2.2 Características de la zona del proyecto
- 38. IV_2.3 Energía solar diaria sobre el sitio del proyecto
- 39. IV_2.4 Tipos de colectores solares
- 40. IV_2.5Especificaciones colector escogido
- 41. IV_2.6 Ficha colector solar escogido
- 42. IV_3.1 Temperatura de agua caliente para intercambiadores auxiliares
- 43. IV_3.2 Datos consumo y características del agua
- 44. IV_3.3 Consumo de energía para calentamiento de agua
- 45. IV_3.4 Costo consumo de petróleo para agua caliente para calentamiento de electrolito

- 46. IV_3.5 Temperatura de electrolito proveniente desde el estanque recirculador de electrolito
- 47. IV_3.6 Datos consumo y características del electrolito
- 48. IV_3.7 Consumo de energía para calentamiento de electrolito
- 49. IV_3.8 Costo consumo de petróleo calentamiento de electrolito
- 50. IV_3.9 Temperaturas en el colector y temperatura exterior
- 51. IV_3.10 Radiación horaria y rendimiento colector
- 52. IV_3.11 Datos radiación acumulada mensual
- 53. IV_3.12 Datos radiación útil mensual
- 54. IV_3.13 Coeficientes y correcciones para el desarrollo del método de carta-F
- 55. IV_3.14 Carta F
- 56. IV_3.15 Aporte solar mensual
- 57. IV_3.16 Aporte combustible mensual
- 58. IV_3.17 Costo consumo de combustible utilizando paneles solares
- 59. IV_3.18 Ahorro utilizando colectores solares planos
- 60. IV_4.1 Valores de K según latitud media de la zona climática
- 61. IV_5.1 Pérdidas manifold exterior
- 62. IV_5.2 Pérdidas manifold interior
- 63. IV_5.3Pérdidas manifold interior
- 64. V_1.1 Costo de equipos en pesos
- 65. V_1.2 Largos totales y costo de cañerías a utilizar
- 66. V_1.3 Costo y cantidad de accesorios a utilizar para el proyecto
- 67. V_1.4 Parámetros para proyecto
- 68. V_1.5 Costos estimados para 20 años con la incorporación de proyecto solar
- 69. V_1.6 Costos de consumo de combustible y reemplazo de la planta en estudio para 20 años

I. Introducción

El consumo de energía primaria en todo el mundo crece exponencialmente año tras año debido al crecimiento continuo de la población mundial y a la mayor demanda humana de estas fuentes. China, la India y Medio Oriente representan el motor del aumento de la demanda energética en la presente década; en cambio la demanda de energía apenas aumenta en los países OCDE (donde pertenece Chile), aunque se observa un marcado alejamiento del petróleo y del carbón (World Energy Outlook 2013, Londres 12 Noviembre). En consecuencia, aumenta la generación de contaminantes que acaban en la atmósfera y de otros residuos que dañan severamente la capa de ozono. Además, el incremento de la demanda de energía unido al progresivo encarecimiento de los combustibles fósiles y al impacto medioambiental asociados a su uso, es cada vez más pronunciado. Tal escenario plantea la necesidad de encontrar e implementar nuevas técnicas de producción de energía más eficientes y sostenibles.

La crisis energética a nivel mundial ha hecho que en Chile se vaya tomando conciencia de la importancia de contar con fuentes de energía a menor costo y sustentables. La matriz energética en nuestro país se caracteriza por ser poco diversificada, dejando al país en un escenario de dependencia energética, lo que parece ser un rasgo estructural de su economía. En el año 1990, el 47,7% del consumo bruto de energía primaria del país se abastecía mediante importaciones, proporción que llegó al 73,6% en el año 2012, es decir, Chile importa aproximadamente tres cuartas partes de la energía que consume (Ministerio de Energía 2012). Esta situación instala al país en un escenario vulnerable en un contexto internacional caracterizado por alta volatilidad en los precios de los insumos e interrupciones en el suministro.

Es por esta razón que se ha motivado la búsqueda e incremento del uso de energías limpias con el objetivo de reducir el consumo de combustibles fósiles y poder sostener los procesos sin aumentar significativamente los costes energéticos. Se prevé que Chile enfrentará un significativo déficit de energía competitiva entre los años 2014 y 2020; las cifras muestran que aun cuando se cumpla en un 100% el plan de obras que elabora la Comisión Nacional de Energía (CNE), el sistema eléctrico no tendrá toda la energía eficiente que necesita para abastecer el incremento de la demanda que el país requerirá hacia fines de la década. En concreto, se registrará un déficit cercano al 33% de esa demanda extra "De acuerdo con sus estimaciones, hoy existe un desequilibrio entre la oferta y la demanda, debido a la falta de nuevos proyectos, lo que hace imposible abastecer los 2.700 (MW) adicionales que se requerirán al 2020 para asegurar el suministro del principal sistema eléctrico del país, el SIC, que va desde Taltal hasta Chiloé, y que abastece a más del 90% de la población" (La tercera,09/06/2013).

No obstante, la energía solar térmica ha mostrado un crecimiento a nivel mundial en los últimos años, incluido Chile, comparable a la evolución que han tenido otras tecnologías renovables, como es el caso de la energía eólica. Estos avances no solamente se han dado en términos de las capacidades instaladas, sino también desde el punto de vista técnico, mejorando la calidad de los equipamientos, incorporando nuevos mercados, y desarrollando a nivel mundial políticas y medidas con el propósito de remover las barreras que han limitado la existencia de un mercado maduro. La energía solar térmica consiste en la transformación de la energía radiante emitida por el sol en energía térmica y tiene diversas aplicaciones tales como: calentamiento de piscinas, procesos industriales, climatización de ambientes, y últimamente por generación de electricidad.

Chile es el principal productor de cobre, participando del 34,9% de la producción mundial en los últimos 10 años (2001-2010), con un total de 5.418.900 toneladas el año 2010 (Anuario de estadísticas del cobre y otros minerales, 1991-2010. Santiago, Chile. COCHILCO, 2011). Este amplio liderazgo es consecuencia de grandes cambios en la minería del país, que comenzaron en 1966 con la "chilenización del cobre". Una de sus consecuencias fue que el Estado tendría el 51 por ciento de la propiedad de los vacimientos, lo que trajo consigo importantes inversiones tanto nacionales como internacionales (HistoriadeCodelco.http://www.codelco.com/la corporacion/historia.asp). En los años 80' se aplicó por primera vez en Chile la tecnología de extracción por solvente y electroobtención (SX/EW). En el 2010, la producción por esta vía alcanzó las 2.088.500 toneladas, lo que corresponde al 66,3% del total mundial (Anuario de estadísticas del cobre y otros minerales, 1991-2010. Santiago, Chile. COCHILCO, 2011). Sin ir más allá, el Vicepresidente Ejecutivo de Cochilco, Sergio Hernández, señaló que el consumo esperado de energía de la minería del cobre al año 2025 llegará a 39,47 [Tera Watts-hora] lo que representa un alza de 80% respecto a lo previsto para este año. "Los resultados que entrega este estudio, que incluye además información de consumo por Sistema Interconectado, por procesos productivos, estados de desarrollo de los proyectos, entre otros-, son un aporte para la generación de políticas públicas que permitan un desarrollo sostenible del sector energía y minería, así como en ámbitos de eficiencia energética y cambio climático", señaló el Vicepresidente Ejecutivo de Cochilco (Comunicado de prensa, Cochilco, Santiago 26 de noviembre 2014).

El cobre es una de las principales fuentes de recursos para el Fisco y ha permitido que las reservas internacionales crecieran significativamente, obteniendo considerables ahorros para enfrentar el futuro y aumentando el nivel de bienestar de la sociedad chilena. Con precios superiores a US\$ 3 la libra, los chilenos consumen cada vez más bienes importados y exigen mayores gastos públicos en bienes sociales. Es por esta razón que es necesario mejorar los procesos de producción de cobre e innovar en su desarrollo, con el fin de reducir los costos de producción para mantenerlo competitivo frente a un mercado permanentemente en aumento.

II. Objetivos

Objetivos Generales:

Presentar un estudio de factibilidad técnica y económica de implementar un sistema de energía solar para el ahorro de combustible en el proceso de calentamiento de electrolito para la producción de cobre

Objetivos Específicos:

- Comparar el costo de la inversión y operación con respecto al modelo original de Calderas.
- Bajar costos de la producción de Cobre

III. Consumo energético minería

Chile es el principal productor de cobre, participando del 34,9 % de la producción mundial en los últimos 10 años, con un total de 5.418.900 [t] el año 2010 [8]. Este liderazgo es debido a grandes cambios en la minería del país, que comenzaron en 1996 con la "chilenización" del cobre. Dentro de sus beneficios fue que el Estado tendría el 51% de la propiedad de los yacimientos, lo que atrajo consigo importantes inversiones tanto nacionales como internacionales. En los años 80' se aplicó por primera vez en Chile la tecnología de extracción por solvente y electroobtención (SX/EW). En el 2010 la producción por este método alcanzó 2.088.500 [t], lo que corresponde al 66,3% del total mundial [9].

Resulta importante para el desarrollo del país conocer y optimizar los procesos energéticos, más aún cuando estos tipos de procesos hidrometalúrgicos se proyectan como la vía preferida de extracción a largo plazo por sus ventajas económicas y menores índices de contaminación.

El aumento de los costos de la energía, la dependencia del petróleo y sus consecuencias en las mayores presiones inflacionarias hacen que sea imprescindible la inclusión de nuevas tecnologías a los procesos ya existentes, para que de ésta manera sigan siendo competitivos frente a los diferentes mercados internacionales.

En el gráfico N°1 a continuación se muestra la evolución de precios del combustible diésel desde Enero del año 1999 hasta Julio del año 2014 para la primera región. Los precios se muestran en \$/lt.

Gráfico III.1 Evolución del precio del petróleo diésel entre años 1994 y 2014. (Elaboración Propia, datos obtenidos [11])

IV. Evaluación Técnica

1. Descripción del Proyecto

Actualmente la planta en estudio opera con 2 calderas a petróleo (Calentadores de agua 627-B0-001@003) más una "stand by", que operan en horario continuado. Las calderas calientan un flujo de agua de 1100 $[m^3/h]$ (Flujo 11) desde 74,5 [°C] (Flujo 13) a la temperatura de 90 [°C]. En la tabla N°1 se pueden observar las propiedades de cada flujo nombrado. Este volumen de agua se separa para otros procesos siendo el flujo N° 1 el de interés del proyecto. Este volumen de agua (flujo 1) es transportado por medio de cañerías e impulsado por una bomba eléctrica a unos intercambiadores de calor auxiliares.

La representación de las calderas y el modelo del sistema se puede observar a continuación en la figura IV_1.1:

Figura IV_1.1 Diagrama de flujos de procesos de distribución de agua caliente. (Plano completo en anexo)

NUMERO DE FL	.UJO		1	13	11
DESCRIPCION		UNIDAD	AGUA CALIENTE A INTER- CAMBIADORES AUXILIARES	RETORNO AGUA DE CALEFACCION ELECTROLITO	AGUA CALIENTE CIRCULANTE
	NOMINAL	m 3/h	-	-	-
FLUJO	INSTANTANEO	m 3/h	-	-	-
	DISEÑO	m 3/h	1000	1000	1110
DENSIDAD		t/m ³	0,97	0,98	0,97
TEMPERATURA D	e diseño	°C	90	74.5	90
NORSERVACIONES					

Tabla IV_1.1 Datos de flujos de distribución agua caliente. (Plano completo en anexo)

Luego de que el agua impulsada llega a los intercambiadores de calor auxiliares (Flujo 12,), en la figura *IV_1.2* se puede observar que éstos calientan a su vez 1000 $[m^3/h]$ de la solución "electrolito", que viene desde el estanque recirculador de electrolito (Flujo 5) desde la temperatura de 48 [°C] y lo calientan a 65 [°C]. Este porcentaje de electrolito (1000 $[m^3/h]$ a [°C], sumatoria flujo 5A) posteriormente se junta con el resto del flujo proveniente del estanque de recirculación de electrolito (Flujo 5B), elevando la temperatura del flujo total (8720 $[m^3/h]$) a 50 [°C].

El proceso descrito anteriormente se puede observar a continuación en la figura *IV_1.2* y las propiedades de cada flujo en la tabla *IV_1.2*.

Figura IV_1.2 Diagrama de flujos de procesos estanque de electrolito. (Plano completo en anexo)

NUMERO DE FLU	ŊO		5	5 A	5 B	6	12	13
DESCRIPCION		UNIDAD	ELECTROLITO A CADA INTERCAMB. DE CALOR	ELECTROLITO DE INTERC. AUXILIAR	BY-PASS ELECTROLITO A CELDAS	ELECTROLITO A SECCION DE CELDAS	AGUA CALIENTE A CADA INTERCAMB. AUXILIAR	RETORNO AGUA CALIENTE
	NOMINAL	m ³∕h	<u> ^</u> ₽ –	-	8 -	4.180	-	-
FLUJO	INSTANTANEO	m ³∕h	2 \500	500 /	3,860	4.360	-	-
	DISEÑO	m ³∕h	500	500 / 2	4.360	4.360	500	1000
	Cu	g / L	37	37	37	37	-	-
	H ₂ SO ₄	g / L	176,7	176,7	176,7	176,7	-	-
CONCENTRACION	Fe	g / L	< 1,5	< 1,5	< 1,5	< 1,5	-	I
	CI	g / L	< 0,030	< 0,030	< 0,030	< 0,030	< 0,005	< 0,005
	Org.	g / L	< 0,005	< 0,005	< 0,005	< 0,005	-	-
DENSIDAD		t/m ³	1,18	1,18	1,18	1,18	0,97	0,98
TEMPERATURA DE	E DISEÑO	°C	48	65	48	50	90	74,5

Tabla IV_1.2 Datos de flujos de procesos de distribución de electrolito

El proyecto a desarrollar pretende calentar 1000 $[m^3/h]$ de electrolito, por medio de un sistema de paneles solares térmicos, desde la temperatura de 48 [°C] (flujo 5C) haciéndolo pasar a través de un intercambiador de calor, y de este modo elevar su temperatura a 57 [°C] (Flujo 5D) aproximadamente. Este proceso se realizará antes del ingreso del flujo de electrolito (flujo 5A) a los intercambiadores de calor que reciben el agua caliente de la caldera, con el fin de elevar la temperatura de todo el flujo de electrolito y así proporcionar un ahorro de combustible que ayude al funcionamiento de la planta.

Este proceso está representado a continuación en la figura IV_1.3:

Figura IV_1.3 Diagrama modelo solar térmico a implementar (Elaboración propia)

Tabla IV_1.3 Propiedades de flujos sistema solar térmico. (Elaboración propia)

Número de Flujo		5C	5D
Descripción	Unidad	Electrolito de tanque recirculador de electrolito	Electrolito de paneles solares
Flujo			
Diseño	$m^3/_h$	1000	1000
Densidad	$t_{m^{3}}$	1.18	1.18
Temperatura	°C	48	57

2. Energía Solar

2.1 Introducción a la Energía Solar

El Sol, desde nuestro punto de vista energético, es una inmensa esfera de gases a muy alta temperatura, con un diámetro de $1,39 * 10^9 [m]$, situado a una distancia media de $1,5 * 10^{11}[m]$ respecto de la Tierra. El origen de la energía que el Sol produce e irradia está en las reacciones nucleares que se producen continuamente en su interior, de forma que los átomos de Hidrógeno se fusionan entre sí formando átomos de Helio, o reacciones entre átomos de Helio y/o Helio-Hidrógeno. Estas reacciones hacen que una pequeña cantidad de materia o defecto de masa se convierta en energía de acuerdo con la ecuación $E = m * c^2$, dónde E es la cantidad de energía liberada cuando desaparece la masa m y c es la velocidad de la luz. La cantidad de energía que transmite el Sol en un segundo es del orden $4 * 10^{26} [J]$.

La mayor parte de esas ondas electromagnéticas (fotones) emitidas por el Sol tienen una longitud de onda comprendida entre 0.3 μ m y 3 μ m, aunque solamente las que van desde 0.4 μ m a 0.7 μ m son susceptibles de ser captadas por el ojo humano, formando lo que se conoce como "luz visible".

Al extenderse por el espacio en todas direcciones, la energía radiante del Sol se reparte según una esfera ficticia, cuyo centro es el Sol y cuyo radio crece a la misma velocidad que la propia radiación. Por lo tanto, la intensidad en un punto de dicha superficie esférica, al repartirse la energía solar sobre un área cada vez mayor, será tanto más pequeña cuanto mayor sea el radio de la misma. El valor aproximado de esta intensidad a la distancia que se encuentra nuestro planeta del Sol se conoce como constante solar y tiene un valor de $1367[w/m^2]$ [1]. Lo cierto es que la constante solar sufre ligeras variaciones debido a que la distancia entre la Tierra y el Sol no es rigurosamente constante, ya que la órbita terrestre no es circular sino elíptica.

Aunque los rayos solares se trasladen en línea recta, los fotones al llegar a la atmósfera sufren difusiones y dispersiones. Esta luz difundida finalmente llega también a la superficie, y al haber cambiado muchas veces de dirección al atravesar la atmósfera, lo hace como si proviniese de toda la superficie celeste. A esta radiación se la conoce con el nombre de "radiación difusa". Para nuestro caso particular deberemos considerar la suma de la radiación difusa y la radiación directa, formando así la radiación total. La radiación difusa supone aproximadamente un tercio de la radiación total que se recibe a lo largo del año. A continuación en la figura IV_2.1 se puede observar la representación de los diferentes tipos de radiación.

Figura IV_2.1 Representación radiación directa, radiación difusa y radiación reflejada. [8]

Figura IV_2.2 Radiación directa y difusa con respecto a un plano inclinado óptimo. [1]

La radiación solar que traspasa la atmósfera y que incide sobre una superficie horizontal terrestre se compone de radiación solar directa y radiación solar difusa. La suma de estas dos radiaciones en una superficie se conoce como radiación global horizontal, la cual se mide en unidades de energía por superficie. La radiación global superficie inclinada es la suma de las tres tipos de radiaciones difusa, directa y reflejada. En la figura *IV_2.2* se puede observar los tipos de radiación sobre una superficie inclinada.

razón que naturalmente la tierra también emite radiación hacia el espacio. Una parte significativa de esta radiación se pierde por medio de una ventana de transparencia atmosférica que existe entre los 8 y 14 [µm] de longitud de onda y que, el CO2 y vapor de agua tienden a cerrar esta ventana, de allí el peligro del efecto invernadero y calentamiento global. Esta "ventana" de transparencia atmosférica explica el rocío, escarcha y heladas los cuales son fenómenos básicos para el balance térmico de la tierra.

Existe una larga lista de fuentes disponibles con datos sobre la radiación solar en Chile, de entre las tales como:

2.1.1 Fuentes Nacionales:

Registro Solarimétrico de la Universidad Técnica Federico Santamaría (UTFSM): Registro bibliográfico generado por la UTFSM [2]. Los datos fueron generados en el Laboratorio de Energía y Evaluación Solar de la UTFSM.

Explorador solar online del Departamento de Geofísica de la Universidad de Chile: herramienta en línea generada por el Departamento de Geofísica de la Universidad de Chile [3]. Proporciona datos para el territorio chileno basados en información de satélites que cubren regularmente el país.

2.1.2 Fuentes Internacionales:

Registro de World Radiation Data Center: registro periódico de datos de radiación solar de una alta cantidad de localidades a nivel mundial mantenida por la Organización Meteorológica Mundial (WMO) [4]. Los datos para Chile corresponden a mediciones de la Dirección Meteorológica de Chile.

Herramienta de cálculo Retscreen: herramienta informática que ayuda a modelar proyectos de tecnologías de fuentes de energía limpia que incluye datos sobre radiación solar [5]. Estos datos estaciones terrestres y datos de satélites de la NASA, que cubren toda la superficie del planeta, así como enlaces a mapas de recursos energéticos de todo el mundo

2.2 Índice de transparencia atmosférica (ITA)

El índice de transparencia atmosférica (ITA) es un valor adimensional que mide la cantidad de radiación solar que traspasa la atmosfera y alcanza la superficie terrestre, es decir mide lo transparente que es la atmósfera a la radiación solar. Este índice es un cociente entre la media de radiación sobre una superficie horizontal y la radiación extraterrestre media total en un periodo de tiempo determinado, como muestra a continuación:

$$K_T = \frac{H}{H_0}$$

- *K_T*: Índice de transparencia atmosférica
- *H*: Media de la radiación sobre la superficie horizontal [W/m2]
- H₀: Media de la radiación extraterrestre [W/m2]

Para valores medios mensuales existe una correlación lineal entre la fracción de horas de sol y la radiación solar sobre la horizontal que se calcula según la llamada regresión de Angstrom. Esta relaciona la razón de la media de radiación diaria sobre la superficie horizontal con la fracción promedio de horas posibles de sol medidas para el periodo en cuestión, dada por las siguientes ecuaciones:

$$K_T = a + b * K_s$$
$$H = H_0(a + b * K_s)$$

Donde a y b son las constantes de la llamada ecuación de Angstrom-Prescott. El término K_s es un valor adimensional llamado Fracción de Asoleamiento y está definida por:

$$K_s = \frac{S}{S_0}$$

S: Media de las horas de sol diarias con cielo despejado S_0 : Media de las horas de sol diarias sin nubosidad

Con el índice de transparencia atmosférica es posible establecer un ranking de cielos dados intervalos específicos para valores de K_T . En la tabla IV_2.1 se muestran los valores para dicho ranking:

Tabla IV_2.1 Evaluación de cielos según índice de transparencia atmosférica [7]

ELEMENTO	NECESARIO
$K_T \cong 0,3$	Nublado y lluvioso
$K_T < 0,5$	Nublado
$0,5 < K_T < 0,65$	Parcialmente Despejado
$K_T > 0,65$	Despejado

2.3 Análisis Recurso Solar En Chile

2.3.1 Zona Climática

El norte de Chile posee uno de los mejores recursos de radiación solar del mundo en torno a 7 $[kWh/m^2 dia]$ de radiación global horizontal en la mayoría del Norte Grande.

2.3.2 Recurso solar de la zona del proyecto

El proyecto se desarrolla para las condiciones de la ciudad de Iquique ya que posee todas las cualidades del Norte grande de nuestro país. La zona norte posee los mayores valores para la radiación global horizontal y la evaluación de los cielos muestra que estos tienden a ser parciales y despejados, lo cual implica una alta radiación directa. Para la zona centro se muestran niveles de radiación menores con respecto a la zona norte y la evaluación de los cielos muestra que estos son en general parciales en la zona centro-norte y se vuelven nublados para las localidades más al sur. Si bien es cierto que plantas térmicas solares utilizan una porción considerable de terreno, al hacer un balance entre potencia eléctrica de salida versus superficie afectada por la planta, se tiene que estas plantas requieren menores superficies de terreno que plantas hidroeléctricas (incluyendo el área inundada necesaria al construir la represa) o plantas a carbón (incluyendo el área de la minera para la extracción del carbón) [7].

Chile posee inmejorables condiciones para la instalación de centrales solares, tanto para centrales solares térmicas como para grandes centrales fotovoltaicas. Los datos presentados a continuación fueron obtenidos mediante el explorador del recurso solar de la universidad de Chile,

y muestra la compatibilidad perfecta entre los grandes consumos energéticos del norte del país y el recurso solar presente en la zona. Con los datos de la ciudad de Iquique se entrega la siguiente información:

2.3.3 Información de la ciudad

Tabla IV_2.2 Características de la zona del proyecto (Elaboración propia, reporte solar)

ELEMENTO	NECESARIO
Latitud	20.23 _S
Longitud	70.15 _0
Elevación	0 metros

2.3.4 Irradiancia Global Horizontal

Irradiancia Global Horizontal:

Promedio Anual (2003-2011)

Figura IV_2.3 Irradiancia Global Horizontal promedio (Reporte Solar)

La siguiente tabla muestra el valor promedio de la energía incidente durante el año en la zona indicada. Este valor puede variar considerablemente en lugares con topografía abrupta, donde se encuentren encajonados o donde el día tenga menos duración.

Año	MJ/m ²	kWh/m ² dia
2003	20,25	5,62
2004	18,75	5,21
2005	18,43	5,12
2006	18,44	5,12
2007	18,54	5,15
2008	19,44	5,40
2009	20,63	5,73
2010	20,08	5,58
2011	18,99	5,28
2012	20,63	5,73
Promedio	19,42	5,39

Tabla IV_2.3 Energía solar diaria sobre el sitio del proyecto (Reporte solar)

Grafico IV_2.1 Irradiancia Global Horizontal promedio de cada mes. (Reporte Solar)

Grafico IV_2.2 Porcentaje mensual promedio de albedo en la zona del proyecto. (Reporte solar)

Gráfico IV_2.3 Porcentaje mensual promedio de nubosidad en la zona del proyecto. (Reporte solar)

Gráfico IV_2.4 Promedio mensual de temperaturas en la zona del Proyecto. (Reporte Solar)

Gráfico IV_2.5 Promedio mensual de la velocidad del viento para la zona del proyecto. (Reporte Solar)

Figura IV_2.4 Mapa de radiación Solar. (Reporte Solar)

2.4 Tecnologías de captación Solar

La energía solar térmica se puede definir como el aprovechamiento de la radiación solar por la transferencia de calor a un fluido calo-portador para su posterior aprovechamiento en la obtención de energía. Los elementos fundamentales para poder traspasar la energía radiante del sol a este fluido son los colectores solares o también llamados captadores solares. Un colector solar, es cualquier dispositivo diseñado para recoger la energía irradiada por el sol y convertirla en energía térmica. Los colectores solares pueden clasificarse en tres categorías generales: colectores de alta temperatura o de concentración, colectores de media temperatura y colectores de baja temperatura o sin concentración. En la figura IV_2.5, a continuación, se muestra un esquema con los diferentes tipos de sistemas para el aprovechamiento de la energía solar

Figura IV_2.5 Sistemas de captación para el aprovechamiento de la energía solar. [6]

Existen distintos tipos de colectores solares según como absorben la energía solar y la transportan al fluido calo-portador, dado el amplio rango de temperaturas utilizadas por los distintos procesos y las distintas características de los recursos solares a lo largo del país, existen distintas alternativas que pueden ser utilizadas. En general, la alternativa solar más conveniente será aquella que ofrezca buenas eficiencias (y que por tanto, sea capaz de satisfacer los requerimientos de calor particulares de ese proceso), y que posea el menor costo posible. En la tabla IV_2.4 se destacan diferentes tipos de paneles solares junto con su rango de temperatura de trabajo.

Tabla IV_2.4 Tipos de colectores solares. [7	']
--	----

Movimiento	Tipo Colector	Tipo Absorbedor	Razón de Concentración	Rango de Temperatura Trabajo °C
Estacionario	Colector placa plano (FPC) Colector Tubo Evacuado (ETC)	Plano Plano	1	30 - 80 50 - 200
	Colector Parabólico Compuesto (CPC)	Tubular	1 - 5	60 - 240
Movimiento	Reflector Lineal Compacto (CLRF) Compact Linear Fresnel Reflector	Tubular	10 - 40	60 - 250
en 1 eje	Colector Concentrador Cilíndrico Cylindrical Trough Colector (CTC)	Tubular	15 - 50	60 - 300
	Colector Concentrador Parabólico Parabolical Trough Colector (PTC)	Tubular	10 - 85	60 - 400
Movimiento	Disco Concentrador Parabólico Parabolical Dish Reflector (PTC)	Punto	600 - 2000	100 -1500
en 2 ejes	Campo de Helióstatos Concentradores Heliostat Field Collector HFC	Punto	300 - 1500	150 - 2000

2.4.1 Colectores Solares de Baja temperatura

Las tecnologías de colectores sin concentración como colectores solares de placa plana (CPP) y colectores de tubos al vacío (CTV), ofrecen comparativamente un mejor desempeño en climas con cielos parciales y constantemente nublados, ofreciendo eficiencias razonables con altas tasas de radiación difusa. Sin embargo es posible encontrar cierta pérdida de estas ventajas en climas con cielos normalmente despejados y alta radiación. Estas características incidirán en las zonas geográficas en los cuales se podrán estos colectores

2.4.2 Colector Solar de Tubos al Vacío

Estos colectores están conformados por tubos de vidrio en cuyo interior se produce el vacío. El vacío funciona como un aislante térmico disminuyendo significativamente las pérdidas de calor por conducción y convección. En los colectores del tipo "Heat Pipe", el tubo de vacío lleva en su interior una placa absorbedora de cobre-aluminio con un tubo hueco cerrado por los dos extremos, sometido también al vacío y con una pequeña cantidad de una mezcla de alcohol dentro del mismo.

Figura IV_2.6 Colector solar tubo de vacío

2.4.3 Colectores de placa plana

Estos colectores pueden calentar el líquido en el interior utilizando radiación directa o radiación difusa, que es dominante en los días nublados, ya que es el calor circundante el que está siendo absorbido y no la luz, a diferencia de los colectores de concentración. Para aplicaciones residenciales y pequeñas aplicaciones comerciales, el colector solar de placa plana tiende a ser bastante rentable debido a su diseño simple y de bajo costo, a la vez que la instalación de este sistema relativamente fácil en comparación con otras formas de sistemas de calentamiento de agua caliente. La simpleza del funcionamiento de estos colectores hace que tengan limitaciones en la 25 temperatura que pueden alcanzar, así a mayores requerimientos de calor, menor es la eficiencia de estos colectores, por lo que se considerarán estos colectores para requerimientos de calor industrial de hasta 70°C. En la figura IV_2.7, a continuación, se muestran los colectores solares planos.

Figura IV_2.7 Colector solar de placa plana.

2.4.4 Colector solar Seleccionado

Para el proyecto se seleccionó un colector solar de placa plana (CPP) de marca Chromagen y línea Confort, considerando que por sus características es la mejor opción para el proyecto.

Tabla IV_2.5	Especificaciones	colector	escogido.
--------------	------------------	----------	-----------

Ficha técnica colector solar seleccionado			
Marca	Chromagen		
Denominación	PA-F		
Tipo de Colector	Captador Plano (CCP)		
C	Dimensiones y Pesos		
Largo Total	2,190 [mm]		
Ancho Total	1,275 [mm]		
Fondo	90 [mm]		
Área Total	2,80 [m^2]		
Área de Apertura	2,58 [m^2]		
Área del Absorbedor	2,53 [m^2]		
Peso en Vacío	41 [Kg]		
Capacidad del Fluido	1,5 [l]		
Fluido Calo portador	Agua o Agua Glicolada		
Temperatura de Estancamiento	220 [°C)		
Flexión Máxima del Captador	1.000 [Pa]		
Presiones de Prueba y Caudal Recomendado			
Presión de Timbre	14 [bar]		
Presión Máxima de Trabajo	10 [bar]		
Caudal Recomendado	45 [l/(h*m^2)]		
Caída de Presión	2,24*qi^2+3,72*qi [l/min]		

Tabla IV_2.6 Ficha colector solar escogido.

Calidades de Fabricación				
Absorbedor	Aleta de aluminio soldada por láser a parrilla de conductos de cobre. Recubrimiento selectivo de titanio de alta eficiencia. Absortividad 0,95 y Emisividad 0,05			
Aislamiento	Capa de poliuretano rígido inyectado más capa adicional de Iana mineral, ambas de 25mm de espesor			
Vidrio Solar	Panel único de vidrio solar de 3,2mm de espesor rodeado por una junta de goma de EPDM			
Parrilla de Tubos	Cobre de 8mm de diámetro conectada a tuberías colectoras de 22mm			
Dorso	Polipropileno negro moldeado.			
Lámina de aluminio	Adherida al aislamiento actúa como barrera contra pérdidas de calor por el dorso del captador			
Carcasa	Aluminio anodizado AL6063-T5			
Conexiones Roscadas	Conexiones hembra roscadas de 3/4" de bronce			
Certificaciones				
ηο	80,10%			
К1	3,195 [W/m^2 K]			
К2	0,016 [W/m^2 K^2]			

Gráfico IV_2.6. Curva rendimiento térmico del panel solar.

2.5 Esquema sistema de paneles solares

Figura IV_2.8 Esquema configuración sistema solar térmico.

El sistema primario corresponde al sistema cerrado entre paneles solares y el intercambiador de calor. Los paneles solares planos (CCP) captan la radiación solar y la convierte en energía térmica al intercambiarla con un fluido calo-portador (agua glicolada). Este fluido posee la propiedad de evitar el congelamiento y pérdida por evaporación, al ser expuesto a temperaturas extremas. El fluido es transportado, por medio de una bomba eléctrica, a un intercambiador de calor donde se producirá el intercambio de calor entre el circuito primario y secundario. El calor pasará desde el fluido calo-portador hacia el electrolito sin mezclarse. El circuito cuenta con un estanque de expansión para que no se generen diferencias bruscas de presión en el circuito del colector debido a la expansión y contracción del fluido calo-portador.

2.5.2 Sistema Secundario

Es aquel que está entre la estación del intercambiador de calor y el consumo normal de electrolito, es el sistema de cañerías, bombas, estanques de expansión y válvulas entre otros que presentará el circuito para poder recircular el electrolito, una vez calentado, hacia el resto del flujo proveniente del estanque recirculador de electrolito, el cual será calentado por el sistema actual de calentamiento.

2.6 Método de cálculo F-Chart

Para el dimensionado de instalaciones de energía solar térmica se sugiere el método de las curvas "F-Chart" que permite calcular la cobertura de un sistema solar. Este método proporciona la información de la contribución del sistema solar al aporte de calor total necesario para cubrir las cargas térmicas, y de su rendimiento medio en un periodo de tiempo. Identifica las variables adimensionales del sistema de calentamiento solar y utilizar la simulación de funcionamiento mediante computador, para dimensionar las correlaciones entre estas variables y el rendimiento medio del sistema para un largo período de tiempo.

La ecuación utilizada en este método puede expresarse por la siguiente fórmula:

$$f = 1,029 * Y - 0,065 * X - 0,245 * Y^{2} + 0,0018 * X^{2} + 0,021 * Y^{3}$$
(1)

Donde:

- *f* : Es el porcentaje de aporte de calor mensual
- X : Factor adimensional que relaciona las pérdidas de energía del captador y la demanda de energía total durante un mes.
- *Y* : Factor adimensional que relaciona la energía absorbida por la placa del captador plano y la demanda de energía total de un mes.

Los factores adimensionales **X** e **Y** se determinan a partir de las siguientes expresiones:

$$X = \frac{(F_R U_L)}{1000} * \left(\frac{F'_R}{F_R}\right) * (100 - T_a) * 24 * N * \frac{A_c}{Q_T} * K_1 K_2$$
(2)

Donde:

- $(F_R U_L)$: Coeficiente Global de pérdidas del colector $[W/m^2 K]$
- $\left(\frac{F'_R}{F_R}\right)$: Factor de corrección del conjunto captador-Intercambiador, valor recomendado 0,95.
- *T_a* : Temperatura promedio mensual del ambiente [°C]
- *A_c* : Área total de los colectores [°C]
- Q_T : Demanda energética mensual [kWh/mes]
- N : Número de días del mes [días/mes]
- 100: Temperatura de referencia [°C]
- *K*₁: Factor de corrección por almacenamiento
- K_2 : Factor de corrección para A.C.S. que relaciona la temperatura de A.C.S. la del agua de la red y la media mensual del ambiente.

Con,
$$K_1 = \left[\frac{V_{A_c}}{75}\right]^{-0.25}$$
 (3) $y \quad K_2 = \frac{(11.6+1.18*T_{ACS}+3.86*T_{red}-2.32*T_a)}{(100-T_a)}$ (4)

Donde:

- V: Volumen de agua de acumulación en litro [l]
- *T_{ACS}*: Temperatura del ACS [°C]
- *T_{red}*: Temperatura agua de la red [°C]

El coeficiente Y, se determina por la expresión:

$$Y = F_R(\tau \alpha)_n * \left(\frac{F'_R}{F_R}\right) * \left[\frac{(\tau \alpha)}{(\tau \alpha)_n}\right] * H_T * \frac{A_c}{Q_T}$$
(5)

Donde:

- $F_R(\tau \alpha)_n$: Rendimiento óptico colector
- $\left[\frac{(\tau \alpha)}{(\tau \alpha)_n}\right]$: Modificador de ángulo de incidencia. En general, se puede considerar constante; 0,96 para superficies transparentes sencillas o 0,94 para superficies transparentes dobles
- H_T : Radiación útil sobre superficie del colector[kWh/m^2mes]

Las ecuaciones anteriores son válidas entre los siguientes valores límites:

$$0 < Y < 3$$
; $0 < X < 18$ y $37, 5 < (V/A_c) < 300$

De esta forma, la energía útil captada cada mes, Q_u se determina a través de la expresión:

$$Q_u = f * Q_t \tag{6}$$

La cobertura anual, en tanto se determina por la expresión

$$f_{a\tilde{n}o} = \frac{\Sigma Q_{u\,mensual}}{\Sigma Q_{T\,mensual}} \tag{7}$$

3. Cálculos

Primero se debe calcular el consumo actual de la planta, tanto el consumo de energía como el costo de ésta, para así poder identificar de forma más clara las modificaciones y ahorros que se quiere lograr

3.1 Consumo energético de agua caliente para calentamiento de electrolito

Variación de temperatura del agua para el sistema actual. Al ser proceso "aislado" del exterior la temperatura del agua de entrada, que viene desde procesos, es constante durante todo el año.

Mes	Días/Mes	Temperatura agua °C	Temperatura agua de salida °C
Enero	31	74,5	90,0
Febrero	28	74,5	90,0
Marzo	31	74,5	90,0
Abril	30	74,5	90,0
Мауо	31	74,5	90,0
Junio	30	74,5	90,0
Julio	31	74,5	90,0
Agosto	31	74,5	90,0
Septiembre	30	74,5	90,0
Octubre	31	74,5	90,0
Noviembre	30	74,5	90,0
Diciembre	31	74,5	90,0
Total		74,5	90,0

Tabla IV_3.1 Temperatura de agua caliente para intercambiadores auxiliares (Elaboración propia)

3.1.1 Consumo de energía para calentamiento de agua

Para el cálculo de la energía consumida se utiliza la siguiente ecuación:

$$Q = m_{H_2O} * Cp * \Delta T \quad (8)$$

Donde:

 m_{H_2O} : Masa de agua

- C_p : Calor específico del agua [kWh/Kg K]
- ΔT : Diferencia de temperatura [°C]
| Tabla IV_3.2 Datos consumo | y características del agua | (Elaboración propia) |
|----------------------------|----------------------------|----------------------|
|----------------------------|----------------------------|----------------------|

Temperatura Agua Salida	90	C°
Flujo	24000	m3/dia
Densidad agua	999,97	kg/m3
Consumo diario Agua	24.000.000	Lt/día
Calor específico agua	1,16E-03	kW-h/kg K
Rendimiento Caldera	75%	
Rendimiento Instalación	90%	

Tabla IV_3.3 Consumo de energía para calentamiento de agua (Elaboración propia)

Mes	Días/Mes	Temperatura agua °C	Temperatura agua de salida °C	Consumo energía kW-h/mes
Enero	31	74,5	90,0	19.868.612,81
Febrero	28	74,5	90,0	17.945.843,83
Marzo	31	74,5	90,0	19.868.612,81
Abril	30	74,5	90,0	19.227.689,82
Мауо	31	74,5	90,0	19.868.612,81
Junio	30	74,5	90,0	19.227.689,82
Julio	31	74,5	90,0	19.868.612,81
Agosto	31	74,5	90,0	19.868.612,81
Septiembre	30	74,5	90,0	19.227.689,82
Octubre	31	74,5	90,0	19.868.612,81
Noviembre	30	74,5	90,0	19.227.689,82
Diciembre	31	74,5	90,0	19.868.612,81
Total		74,5	90,0	233.936.892,79

Para la ecuación (8) cabe señalar que es modificada al incluir el rendimiento de la caldera y el de la instalación, quedando de la siguiente manera:

$$Q = \frac{m_{H_2O} * Cp * \Delta T}{\eta_{caldera} * \eta_{instalación}}$$
(9)

Gráfico IV_3.1. Demanda mensual de energía (Elaboración propia)

El consumo de energía, como se puede observar en el gráfico IV_3.1, en constante para los diferentes días de mes, 31 y 30 respectivamente (28 para el mes de febrero) por lo que el gasto anual de energía es siempre el mismo.

3.1.2 Costo energético de agua caliente para calentamiento de electrolito

Considerando el valor actual del dólar, que ronda los \$626,97, combustible petróleo con un costo de 571,09 [$\frac{k}{g}$ y poder calorífico de 11,82[$\frac{kWh}{kg}$], un rendimiento de caldera del 75% y un rendimiento de instalación estimado del 90%, se obtiene a través de la siguiente expresión el costo de energía.

$$Costo \ de \ la \ Energía = \frac{Costo \ petróleo \ (\$/Kg)}{PC_{Petróleo} * \eta_{caldera} * \eta_{Instalación} * Valor \ del \ Dolar}$$
(10)

Donde:

 $PC_{Petróleo}$: Poder calorífico del petróleo (kW-h/kg). $\eta_{caldera}$: Rendimiento de la caldera (%). $\eta_{Instalación}$: Rendimiento de la instalación (%).

Este cálculo da como resultado un costo de la energía 0,114 [US\$/kWh]. Obtenido este valor se puede calcular el costo del consumo de petróleo con la siguiente ecuación:

Costo consumo de Petróleo = Costo energía * Consumo de energía (11)

Mes	Días/Mes	Temperatura agua °C	Consumo energía kW-h/mes	Costo consumo Petróleo US\$/mes
Enero	31	74,5 19.868.612,8		2.268.318,8
Febrero	28	74,5	17.945.843,8	2.048.804,1
Marzo	31	74,5	19.868.612,8	2.268.318,8
Abril	30	74,5	19.227.689,8	2.195.147,2
Мауо	31	74,5	19.868.612,8	2.268.318,8
Junio	30	74,5	19.227.689,8	2.195.147,2
Julio	31	74,5	19.868.612,8	2.268.318,8
Agosto	31	74,5	19.868.612,8	2.268.318,8
Septiembre	30	74,5	19.227.689,8	2.195.147,2
Octubre	31	74,5	19.868.612,8	2.268.318,8
Noviembre	30	74,5	19.227.689,8	2.195.147,2
Diciembre	31	74,5	19.868.612,8	2.268.318,8
Total		74,5	233.936.892,8	26.707.624,6

Tabla IV_3.4 Costo consumo de petróleo para agua caliente para calentamiento de electrolito (Elaboración propia)

El costo de operación es proporcional al consumo como se puede observar en la tabla IV_3.4, y como no hay variaciones de temperatura en la entrada y salida del agua durante el proceso, ya que es un sistema "aislado" del exterior, el costo no tiene mayores variaciones solo las que puede experimentar debido al valor del dólar.

3.2 Consumo de energía calentamiento electrolito

Dado a conocer el funcionamiento actual de la planta, en cuanto a consumo y costo energético, se realiza el mismo cálculo para el proceso de calentamiento de electrolito propuesto para el desarrollo del proyecto. Para poder efectuar este cálculo primero se debe establecer la temperatura a la cuál debe elevarse el electrolito para lograr obtener el calor necesario para el proceso.

Para esto primero se estima las características del fluido calo-portador (Agua glicolada, flujo $(1000 \ [m^3/h])$ que se ocupará en el sistema de paneles solares, que transportará la energía hacia el electrolito, y también debe establecerse la temperatura de entrada y salida al intercambiador de calor a ocupar.

Características Fluido Calo-portador:

Fluido: Agua Glicolada (MEG 25%) Flujo: 1000 $[m^3/h]$ Temperatura de entrada: 70 [°C] Densidad (ρ): 1,016 $[t/m^3]$ Calor específico (Cp): 0,001069 [kWh/kg K]Temperatura de salida: 60 [°C]

Con los datos entregados se realiza el cálculo del calor entregado por el fluido calo-portador ocupando la ecuación (8)

 $Q = m_{H_2O\ Glicolada} * C p_{Glicolada} * \Delta T$

El primer paso es convertir el flujo de volumen en un flujo másico

 $m_{H2O \ Glicolada} = Volumen \ (V) * Densidad \ (\rho)$ (12) $m_{H2O \ Glicolada} = 1000 \ [m^3/h] * 1016 \ [kg/m^3]$ $m_{H2O \ Glicolada} = 1.016.000 \ [kg/h]$

Obtenido el flujo másico se procede al cálculo del calor entregado por el fluido calo-portador (Estimado)

 $Q_{H_2O\ Glicolada} = m_{H_2O\ Glicolada} * Cp_{Glicolada} * \Delta T = 1.016.000 * 0,001069 * (70 - 60)$ $Q_{H_2O\ Glicolada} = 10.861\ [kW]$

Con el calor entregado por el fluido calo-portador ya establecido como dato y con las características y flujo del electrolito se puede calcular la temperatura de salida, del electrolito, desde el intercambiador de calor, para así lograr el "salto" a la temperatura deseada en el flujo completo de electrolito (8720 $[m^3/h]$)

Características Electrolito:

Fluido: Electrolito Flujo: 1000 $[m^3/h]$ Temperatura de entrada: 48 [°C] Densidad (ρ): 1,18 $[t/m^3]$ Calor específico (Cp): 0,000987 [kWh/kg K]Temperatura de salida: ¿? [°C]
$$\begin{split} m_{Electrolito} &= Volumen\,(V)*Densidad\,(\rho) = 1000\,[m^3/h]*1180\,[kg/m^3]\\ m_{Electrolito} &= 1.180.000\,[kg/h] \end{split}$$

Considerando:

$$Q_{H_2O\ Glicolada} \cong Q_{Electrolito}$$
 (13)

Ocupando la ecuación (1) se despeja la temperatura de salida

$$Q_{Electrolito} = m_{Electrolito} * Cp_{Electrolito} * (T_{salida} - T_{entrada})$$
$$T_{salida} = \frac{Q_{Electrolito}}{m_{Electrolito} * Cp_{Electrolito}} + T_{entrada}$$

$$T_{salida} = \frac{10.861}{1.180.000 * 0,000987} + 48$$

$$T_{salida} = 57.3 \, [^{\circ}C]$$

Obtenida la temperatura de salida se procede a comprobar, por medio de la ecuación de continuidad, si efectivamente es la temperatura necesaria para el proceso propuesto:

$$V_{1} * T_{1} + V_{2} * T_{2} = V_{Final} * T_{Final}$$
(14)
1000[m³/h] * 57,3[°C] + 7720[m³/h] * 48[°C] = 8720[m³/h] * T_{Final}
$$T_{Final} = 49.06 [°C]$$

El la figura N° 13 se puede observar el esquema de los cálculos anteriores y así identificar de una forma más clara el espacio físico donde se pretende realizar el proyecto.

Figura IV_3.1 Cálculo temperatura de salida electrolito desde el intercambiador de calor. (Elaboración propia)

Ya establecidos los parámetros para alcanzar la temperatura deseada para el total del flujo $(8720[m^3/h] \ a \ 49[^\circ C])$ se procede, al igual que para el calentamiento del agua, al cálculo del consumo energético para el calentamiento de electrolito para el caso de que se realizara por medio

Al igual que en el caso del calentamiento del agua, este proceso es "aislado" del exterior por lo que la temperatura del flujo no varía según las estaciones.

Tabla IV_3.5 Temperatura de Electrolito proveniente desde el estanque recirculador de electrolito. (Elaboración propia)

Mes	Días/Mes	Temperatura Electrolito °C	
Enero	31	48,0	
Febrero	28	48,0	
Marzo	31	48,0	
Abril	30	48,0	
Мауо	31	48,0	
Junio	30	48,0	
Julio	31	48,0	
Agosto	31	48,0	
Septiembre	30	48,0	
Octubre	31	48,0	
Noviembre	30	48,0	
Diciembre	31	48,0	
Total		48,0	

3.2.2 Consumo de energía para calentamiento de Electrolito

Para el cálculo de la energía consumida se utiliza la ecuación (8):

$$Q = m_{H_2O} * Cp * \Delta T$$

Tabla IV_3.6 Datos consumo	y características del Electrolito	(Elaboración propia)
----------------------------	-----------------------------------	----------------------

Temperatura Electrolito Salida	57	C°
Flujo	24000	m3/dia
Densidad Electrolito	1180	kg/m3
Flujo	28.320.000	kg/día
Calor específico Electrolito	9,87E-04	kW-h/kg K
Rendimiento Intercambiador	90%	
Rendimiento Instalación	90%	

Mes	Días/Mes	Temperatura Electrolito °C	Consumo energía kW-h/mes
Enero	31	48,0	9.627.856,0
Febrero	28	48,0	8.696.128,0
Marzo	31	48,0	9.627.856,0
Abril	30	48,0	9.317.280,0
Мауо	31	48,0	9.627.856,0
Junio	30	48,0	9.317.280,0
Julio	31	48,0	9.627.856,0
Agosto	31	48,0	9.627.856,0
Septiembre	30	48,0	9.317.280,0
Octubre	31	48,0	9.627.856,0
Noviembre	30	48,0	9.317.280,0
Diciembre	31	48,0	9.627.856,0
Total		48,0	113.360.240,0

Tabla IV_3.7 Consumo de energía para calentamiento de Electrolito (Elaboración Propia)

Al igual que para el cálculo de consumo de energía para calentamiento de agua, la ecuación (8) es modificada al incluir el rendimiento del intercambiador y el de la instalación quedando de la siguiente manera:

Gráfico IV_3.2 Demanda mensual de energía para calentamiento de Electrolito (Elaboración propia)

3.2.3 Costo energético para calentamiento de electrolito

Considerando el valor actual del dólar, que ronda los \$626,97, combustible petróleo con un costo de 571,09 [$\frac{k}{g}$ y poder calorífico de 11,82[$\frac{kWh}{kg}$], un rendimiento del intercambiador de calor del 90% y un rendimiento de instalación estimado del 90%, se obtiene a través de la siguiente expresión, el costo de energía.

$$Costo \ de \ la \ Energía = \frac{Costo \ petróleo \ (\$/Kg)}{PC_{Petróleo} * \eta_{Intercambiador} * \eta_{Instalación} * Valor \ del \ Dolar}$$
(10)

Donde:

 $PC_{Petróleo}$: Poder calorífico del petróleo (kW-h/kg). $\eta_{Intercambiador}$: Rendimiento del intercambiador de calor (%). $\eta_{Instalación}$: Rendimiento de la instalación (%).

Este cálculo da como resultado un costo de la energía 0,095 [US\$/kWh]. Obtenido este valor se puede calcular el costo del consumo de petróleo con la ecuación (11):

Costo consumo de Petróleo = Costo energía * Consumo de energía (11)

Tabla IV_3.8 Costo consumo de petróleo calentamiento de electrolito (Elaboración propia)

Mes	Días/Mes	Temperatura Electrolito °C	Consumo energía kW-h/mes	Costo consumo Petróleo US\$/mes
Enero	31	48,0	9.627.856,0	915.977,7
Febrero	28	48,0	8.696.128,0	827.334,7
Marzo	31	48,0	9.627.856,0	915.977,7
Abril	30	48,0	9.317.280,0	886.430,0
Мауо	31	48,0	9.627.856,0	915.977,7
Junio	30	48,0	9.317.280,0	886.430,0
Julio	31	48,0	9.627.856,0	915.977,7
Agosto	31	48,0	9.627.856,0	915.977,7
Septiembre	30	48,0	9.317.280,0	886.430,0
Octubre	31	48,0	9.627.856,0	915.977,7
Noviembre	30	48,0	9.317.280,0	886.430,0
Diciembre	31	48,0	9.627.856,0	915.977,7
Total		48,0	113.360.240,0	10.784.898,4

3.3 Aporte Solar Mensual

Se debe calcular el aporte que se obtendrá de la energía solar y para ello se debe tener definidas las temperatura de entrada y salida del colector, y tener los datos de la temperatura exterior de la ciudad

Tabla IV_3.9	Temperaturas	en el	colector y	ı temperatura	exterior	(Fuente	temperatura	exterior
"Datos de ciud	lades para proy	ectos	2014", Re	inaldo Sanchez)			

Mes	Días mes	Temperatura entrada agua Colector	Temperatura salida agua Colector	Temperatura exterior
		°C	°C	°C
Enero	31	60,0	70,0	21,0
Febrero	28	60,0	70,0	21,3
Marzo	31	60,0	70,0	20,8
Abril	30	60,0	70,0	19,2
Mayo	31	60,0	70,0	17,9
Junio	30	60,0	70,0	17,3
Julio	31	60,0	70,0	16,7
Agosto	31	60,0	70,0	16,4
Septiembre	30	60,0	70,0	16,2
Octubre	31	60,0	70,0	16,7
Noviembre	30	60,0	70,0	18,0
Diciembre	31	60,0	70,0	19,6
Media Anual				18,4

Como se observa en la tabla IV_3.9 la temperatura de salida del colector se estima en 70[°C] para alcanzar el intercambio de calor deseado calculado anteriormente y la temperatura de entrada al colector es de 60 [°C] para que el rendimiento del colector no presente un valor demasiado bajo.

Es importante señalar la orientación del colector solar (azimut), es un valor único y representativo para todo el sistema solar térmico, el cual corresponde al ángulo entre la proyección sobre el plano horizontal de la normal a la superficie del colector y el meridiano del lugar, y se debe indicar como un número entero, expresado en grados [°]. Para el proyecto se utiliza el valor de azimut 0[°] que corresponde una orientación hacia el norte [10].

3.4 Rendimiento Colector Solar

El colector solar seleccionado corresponde a la norma europea, por lo que la expresión para calcular el rendimiento del colector es la siguiente [6]:

$$\eta = \eta_0 - a1 * \frac{t_f - t_a}{l_{ns}} - a2 * \frac{(t_f - t_a)^2}{l_{ns}}$$
(15)

Donde:

- η : Rendimiento del colector solar.
- η_0 : Rendimiento óptimo
- *a*1: Coeficiente K1 [W/m2°C]
- a2: Coeficiente K2 [W/m2°C]

 t_f : Temperatura colector (se obtiene promediando la temperatura de entrada y salida del colector) [°C].

 t_a : Temperatura del ambiente [°C]

 I_{ns} : Radiación horaria sobre una superficie inclinada [kW-h/m2día]

Mes	Días mes	I_ns hora	$\frac{\left(t_f - t_a\right)}{I_n}$	$\frac{\left(t_f - t_a\right)^2}{I_n}$	Rendimiento Colector
		$[kW/m^2]$	$[^{\circ}C m^2/W]$	$\left[\left(^{\circ}C^{2}\ m^{2}\right)/W\right]$	[%]
Enero	31	0,81	0,0543	2,39	58,92%
Febrero	28	0,84	0,0520	2,27	59,84%
Marzo	31	0,78	0,0567	2,50	57,99%
Abril	30	0,70	0,0654	3,00	54,40%
Mayo	31	0,58	0.0812	3,82	48,03%
Junio	30	0,50	0,0954	4,55	42,34%
Julio	31	0,46	0,1050	5,07	38,44%
Agosto	31	0,52	0,0935	4,54	42,97%
Septiembre	30	0,59	0,0827	4,04	47,22%
Octubre	31	0,71	0,0680	3,29	53,1%
Noviembre	30	0,77	0,0610	2,87	56,01%
Diciembre	31	0,82	0,0554	2,51	58,39%
		0,67333333			51,47%

Tabla IV_3.10 Radiación horaria y rendimiento colector (Elaboración propia y datos de radiación obtenidos "Datos de ciudades para proyectos 2014", Reinaldo Sánchez)

La tabla *IV_3.10* muestra en una de sus columnas la radiación horaria sobre una superficie inclinada correspondiente a la ciudad de Iquique, además se puede apreciar el rendimiento de los colectores solares, de acuerdo a las condiciones de trabajo indicadas, con un rendimiento medio anual de 51,47% aproximadamente.

Gráfico IV_3.3 Rendimiento colector (Elaboración propia)

Como se observa en el gráfico IV_3.3, el mejor rendimiento se da en los meses de verano, por el contrario, como es de esperarse en los meses de invierno, el rendimiento disminuye siendo Julio el mes más bajo (38,44%)

3.5 Radiación Acumulada Mensual

Mes	Días mes	Rad Total día/mes	Radiación Acumulada mensual
		[kWh/m2 día]	[kWh/m2 mes]
Enero	31	5,85	181,35
Febrero	28	5,93	166,04
Marzo	31	5,44	168,64
Abril	30	4,83	144,90
Мауо	31	3,91	121,21
Junio	30	3,33	99,90
Julio	31	3,05	94,55
Agosto	31	3,55	110,05
Septiembre	30	4,12	123,60
Octubre	31	5,01	155,31
Noviembre	30	5,51	165,30
Diciembre	31	5,92	183,52
		4,70	1.714,37

Tabla IV_3.11. Datos radiación acumulada mensual (Elaboración propia)

3.6 Radiación Útil Mensual

Con el rendimiento del colector obtenido en la tabla *IV_3.10* y la radiación acumulada mensual mostrada anteriormente se obtiene la radiación útil mensual a partir de la siguiente ecuación:

Radiación Útil mensual = Rendimiento Colector * Radiación Acumulada Mensual (16)

Tabla IV_3.12. Datos radiación útil mensual (Elaboración propia)

Mes	Radiación Acumulada mensual	Rendimiento Colector	Radiación útil Mensual
	[kWh/m2 mes]	%	kW-h/m2 mes
Enero	181,35	58,92%	106,85
Febrero	166,04	59,84%	99,36
Marzo	168,64	57,99%	97,79
Abril	144,90	54,40%	78,83
Mayo	121,21	48,03%	58,22
Junio	99,90	42,34%	42,30
Julio	94,55	38,44%	36,34
Agosto	110,05	42,97%	47,29
Septiembre	123,60	47,22%	58,36
Octubre	155,31	53,11%	82,48
Noviembre	165,30	56,01%	92,58
Diciembre	183,52	58,39%	107,16
	1.714,37	51,47%	907,56

Grafico IV_3.5 Radiación Útil Mensual (Elaboración Propia)

El gráfico IV_3.5 muestra el comportamiento de la radiación útil de cada mes del año, como se observa la diferencia entre meses aumenta en comparación al gráfico *IV_3.3*, siendo los mismos meses los de mayor y menor radiación.

3.7 Carta F

Para obtener los valores de la carta-F es necesario primero calcular los coeficientes de la formula "X" e "Y" y las correcciones por volumen de acumulación y temperatura, "K1" y "K2", que se utilizan para obtener el coeficiente "X".

Para esto se ocupan las ecuaciones (2), (3), (4) y (5).

$$K_{1} = \left[\frac{V_{A_{c}}}{75}\right]^{-0,25} \quad y \qquad K_{2} = \frac{(11,6+1,18*T_{ACS}+3,86*T_{red}-2,32*T_{a})}{(100-T_{a})}$$
$$X = \frac{(F_{R}U_{L})}{1000} * \left(\frac{F'_{R}}{F_{R}}\right) * (100 - T_{a}) * 24 * N * \frac{A_{c}}{Q_{T}} * K_{1}K_{2}$$
$$Y = F_{R}(\tau\alpha)_{n} * \left(\frac{F'_{R}}{F_{R}}\right) * \left[\frac{(\tau\alpha)}{(\tau\alpha)_{n}}\right] * H_{T} * \frac{A_{c}}{Q_{T}}$$

mes	Coeficientes formula carta F		Corrección p acumulación y	Corrección por volumen acumulación y temperatura	
	Х	Y	K1	К2	
Enero	12,932	2,971	1,11	2,921	
Febrero	12,893	3,011	1,11	2,923	
Marzo	12,958	2,763	1,11	2,919	
Abril	13,166	2,453	1,11	2,908	
Мауо	13,335	1,986	1,11	2,898	
Junio	13,413	1,691	1,11	2,894	
Julio	13,491	1,549	1,11	2,890	
Agosto	13,530	1,803	1,11	2,888	
Septiembre	13,556	2,092	1,11	2,887	
Octubre	13,491	2,544	1,11	2,890	
Noviembre	13,322	2,798	1,11	2,899	
Diciembre	13,114	3,006	1,11	2,911	

Tabla IV_3.13 Coeficientes y correcciones para el desarrollo del método de carta-F

La tabla IV_3.13 muestra los coeficientes calculados para obtener los valores de la carta-F, para evaluar esta última se utiliza la ecuación (1)

 $f = 1,029 * Y - 0,065 * X - 0,245 * Y^{2} + 0,0018 * X^{2} + 0,021 * Y^{3}$

Tabla IV_3.14.	Carta F (Elaboración	propia)

Mes	Carta-F
	%
Enero	90,57%
Febrero	91,16%
Marzo	87,56%
Abril	81,61%
Мауо	69,49%
Junio	59,30%
Julio	53,48%
Agosto	63,19%
Septiembre	72,24%
Octubre	82,86%
Noviembre	87,46%
Diciembre	90,69%
Media	77,47%

Se observa en la tabla *IV_3.14* que en el mes de julio se obtiene el menor valor, por lo que se prevé que el aporte de energía por parte de los colectores solares será menor, por el contrario en el mes de Febrero se obtuvo el mayor valor, lo que da a suponer que el aporte de energía será mayor.

3.8 Aporte solar mensual

A partir de los valores obtenidos de la carta-F (tabla IV_3.14) y el consumo de energía para el calentamiento de electrolito (tabla *IV_3.7*) se obtiene el aporte solar mensual a través de la siguiente ecuación

Aporte solar mensual = Carta - F * Consumo energía calentamiento electrolito (17)

Mes	Aporte Solar mensual
	kW-h/mes
Enero	8.720.037,59
Febrero	7.927.315,02
Marzo	8.430.214,87
Abril	7.603.499,38
Мауо	6.690.751,54
Junio	5.525.271,57
Julio	5.148.506,86
Agosto	6.083.824,66
Septiembre	6.730.777,84
Octubre	7.978.001,50
Noviembre	8.149.141,81
Diciembre	8.731.856,38
Media	7.309.933,25

Tabla IV_3.15. Aporte solar mensual (Elaboración propia)

3.9 Aporte de combustible mensual utilizando paneles solares

Ya calculado el aporte solar mensual (tabla $IV_3.15$) y conocido el consumo de energía para el calentamiento de electrolito (tabla N° $IV_3.7$), se obtiene el aporte de combustible mensual, utilizando paneles solares planos.

Mes	Consumo Total energía Calentamiento Electrolito	Aporte Solar mensual	Aporte Combustible mensual
	kW-h/mes	kW-h/mes	kW-h/mes
Enero	9.627.856,00	8.720.037,59	907.818,41
Febrero	8.696.128,00	7.927.315,02	768.812,98
Marzo	9.627.856,00	8.430.214,87	1.197.641,13
Abril	9.317.280,00	7.603.499,38	1.713.780,62
Мауо	9.627.856,00	6.690.751,54	2.937.104,46
Junio	9.317.280,00	5.525.271,57	3.792.008,43
Julio	9.627.856,00	5.148.506,86	4.479.349,14
Agosto	9.627.856,00	6.083.824,66	3.544.031,34
Septiembre	9.317.280,00	6.730.777,84	2.586.502,16
Octubre	9.627.856,00	7.978.001,50	1.649.854,50
Noviembre	9.317.280,00	8.149.141,81	1.168.138,19
Diciembre	9.627.856,00	8.731.856,38	895.999,62
Total	113.360.240,00	87.719.199,01	25.641.040,99
Media		7.309.933,25	

Tabla IV_	3.16 Aporte	Combustible Mensual	(Elaboración Propia)
-----------	-------------	---------------------	----------------------

Gráfico IV_3.6 Aporte de combustible, aporte solar y consumo de energía calentamiento electrolito.

Como se puede observar en el gráfico IV_3.6el aporte solar en los meses de verano es cercano a la totalidad del consumo energético para calentamiento del electrolito, sin embargo, en los meses de invierno el aporte disminuye casi a la mitad. Esto nos demuestra que incluso en los meses de mayor aporte solar, será necesario el sistema de calentamiento tradicional (calderas) para que el flujo de electrolito logre llegar a la temperatura deseada para el proceso de electroobtención.

3.10 Costo Combustible

Como se había establecido anteriormente, en la demanda energética, el costo de la energía es de 0,095 [US\$/kW-h], El costo de combustible mensual se da en la tabla *IV_3.17*, con los que se obtiene el costo de combustible

Tabla IV_3.17 Costo Consumo de combustible utilizando paneles solares (Elaboración propia)

Mes	Costo Consumo Energía
	US\$/mes
Enero	86.368,28
Febrero	73.143,54
Marzo	113.941,52
Abril	163.046,14
Мауо	279.431,07
Junio	360.765,16
Julio	426.157,58
Agosto	337.173,05
Septiembre	246.075,37
Octubre	156.964,32
Noviembre	111.134,66
Diciembre	85.243,86
	2.439.444,56

3.11 Ahorro

El costo de consumo de combustible utilizando los calentadores de agua para producir la energía para el calentamiento de electrolito, está ilustrado en la tabla *IV_3.4*, mientras que el costo de combustible utilizando paneles solares se puede observar en la tabla *IV_3.17*, por lo que el ahorro producido por el uso de paneles solares planos se muestra a continuación en la tabla *IV_3.18*:

Mes	Costo total energía Calentamiento Electrolito	Costo Consumo Energía	Ahorro mensual
	US\$/mes	US\$/mes	US\$/mes
Enero	915.977,67	86.368,28	829.609,38
Febrero	827.334,67	73.143,54	754.191,12
Marzo	915.977,67	113.941,52	802.036,15
Abril	886.430,00	163.046,14	723.383,86
Mayo	915.977,67	279.431,07	636.546,60
Junio	886.430,00	360.765,16	525.664,84
Julio	915.977,67	426.157,58	489.820,09
Agosto	915.977,67	337.173,05	578.804,62
Septiembre	886.430,00	246.075,37	640.354,63
Octubre	915.977,67	156.964,32	759.013,35
Noviembre	886.430,00	111.134,66	775.295,34
Diciembre	915.977,67	85.243,86	830.733,80
	10.784.898,35	2.439.444,56	8.345.453,79

Tabla IV 3.1	8. Ahorro utilizan	do colectores	s solares planos.	(Elaboración	Propia)
_				•	

Se puede observar que anualmente hay un ahorro, no menor, de US\$ 8.345.453,79 que la industria obtendría con este sistema. Es necesario dejar en claro que este cálculo es sobre la extracción de los 1000 $[m^3/h]$ de electrolito del proceso, sin embargo la industria siempre necesitará el combustible para poder operar.

Es necesario comentar que para obtener los datos de radiación solar considerada para los cálculos y considerando el rendimiento de los colectores se debe instalar 85.000 paneles solares, cuyo número fue entregado gracias a la utilización del método de carta-F.

4. Distancia mínima entre colectores solares

El Reglamento de instalaciones térmicas en los edificios en Chile (Ritch, 2010) exige un mínimo de distancia entre los colectores, que deben garantizar un mínimo de 4 horas de sol en torno al mediodía del solsticio de invierno. Consiste básicamente en un problema geométrico como se muestra en la Figura siguiente:

Figura IV_4.1 Distancia entre colectores solares

La distancia mínima "d" se calculó a través de la siguiente fórmula

$$d \ge a + b \quad (18)$$

Con:

- d: distancia mínima entre los colectores solares
- I: largo del colector solar seleccionado [mm]
- β: ángulo de inclinación de colector solar respecto al plano horizontal
- $c = \text{Sen } \beta \times I \text{ [mm]}$
- a = c x k
- k: es un coeficiente adimensional que se obtiene de la tabla siguiente, en función de la latitud media que se indica en la tabla N°28, para la comuna donde se instala el Sistema solar térmico [10]
- $b = \cos \beta x I$

Tabla IV_4.1	Valores de K	según latitud	media de la	zona climática.	[10]
--------------	--------------	---------------	-------------	-----------------	------

Latitud media	К	Latitud media	K	
18	0,85	37	1,73	
19	0,89	38	1,8	
20	0,92	39	1,88	
21	0,96	40	1,96	
22	0,99	41	2,05	
23	1,03	42	2,15	
24	1,06	43	2,26	
25	1,1	44	2,37	
26	1,14	45	2,5	
27	1,18	46	2,64	
28	1,22	47	2,79	
29	1,27	48	2,96	
30	1,32	49	3,14	
31	1,37	50	3,35	
32	1,42	51	3,59	
33	1,47	52	3,86	
34	1,53	53	4,18	
35	1,59	54	4,54	
36	1,66	55	4,97	

Datos:

- L= 2.190 [mm]
- β = -20°
- c=sin(-20) * 2.190 = 749 [mm]
- k= 0,96
- a = c * k = 749 * 0,96 = 719[mm]]
- b = Cos(-20) * 2.190 = 2.058 [mm]
- $d \ge a + b = 719 + 2.058 = 2.777 \ [mm]$

Como se puede observar la distancia mínima entre colectores debe ser a lo menos 2,77 [m], pero para el estudio de nuestro proyecto se considerará una separación de 3,5 [m] para tener un espacio más amplio para la instalación y mantención de los equipos.

Se debe determinar el tipo de conexión entre los colectores solares y su distribución en la zona del proyecto, con el fin de elegir la mejor alternativa y lograr un equilibrio de producción de energía entre la temperatura deseada y el caudal de trabajo.

Los colectores serán instalados en paralelo (10 paneles) con balanceo por retorno invertido y una separación entre colector de 0,2[m] como se muestra a continuación en las figura IV_4.2 y IV_4.3:

Figura IV_4.2. Arreglo colectores en paralelo con manifold externo con balanceo por retorno invertido (Elaboración Propia)

Figura IV_4.3. Separación entre colectores. (Elaboración Propia)

Las filas horizontales (conjunto de 10 paneles en paralelo) pueden variar a las que se estimen necesarias, considerando las pérdidas que conlleve esto.

Para determinar el número de filas horizontales es necesario calcular las pérdidas generadas por el largo de cañerías y accesorios, las cuales variarán según los colectores instalados. Para esto se procede a realizar el cálculo de pérdidas para diferentes números de colectores solares (200, 500, 1000 y 2000) con el objeto de identificar la relación entre número de colectores instalados y pérdidas generadas por estos.

5. Pérdidas de Carga

Son las pérdidas de energía que experimenta un fluido viscoso durante su escurrimiento causado por:

- Roce entre moléculas de fluidos por efectos de los gradientes internos de velocidad
- Roce del fluido con la pared de la tubería por efectos de la rugosidad superficial puesto que para un fluido viscoso prevalece la condición de adhesión que establece que la velocidad en la pared es cero, luego, el roce es por efecto de la rugosidad superficial.
- Cambios de dirección de las líneas de corrientes, torbellinos, contracción y expansión, singularidades en general de la corriente de fluido que impactan a las líneas de corriente.

Bajo estos conceptos, las pérdidas de carga se clasifican en 2 tipos:

Pérdidas Regulares: Se producen en tuberías rectas de sección constante y responden a las 2 primeras causas indicadas anteriormente, esto es, roce entre moléculas de fluido y roce del fluido con la pared.

Pérdidas Singulares: Se generan en accesorios dispuestos en las tuberías, esto es, válvulas, codos, reducciones, contracciones, tee, uniones y todo elemento que modifique y/o altere la trayectoria de una línea de corriente. [12]

5.1 Fluido real

Los efectos viscosos generan fricción intramolecular con la superficie de la cañería que lo conduce. La magnitud de los esfuerzos viscosos depende de la forma como las moléculas se desplacen a lo largo del conducto, esto es:

- *En régimen laminar*: Las moléculas se desplazan sólo en el sentido longitudinal a lo largo del escurrimiento y siempre en forma paralela entre líneas de corriente y con la pared. El perfil de velocidades que se desarrolla es de tipo parabólico y obedece a un polinomio de orden 3.
- En régimen turbulento: Las moléculas durante el escurrimiento se desplazan mediante trayectorias longitudinales y transversales, es decir, de manera aleatoria o desordenada. Su

perfil de velocidades es irregular e inestable y no puede ser representado mediante alguna función específica.[12]

La forma del escurrimiento laminar y turbulento se muestran a continuación en la figura IV_5.1:

Figura IV_5.1. Régimen laminar y turbulento. [12]

El parámetro que define si un escurrimiento es laminar o turbulento se conoce como Número de Reynolds (Re) y se define como:

$$Re = \frac{Fuerzas \ de \ inercia}{Fuerzas \ viscosas} = \frac{\vec{v} \cdot l}{v}$$
(19)

Donde:

 \vec{v} = velocidad media del escurrimiento [m/s] l= longitud característica [m] v= viscosidad cinemática [m^2/s]

Límites de Re para escurrimiento por interior de cañerías:

- Régimen laminar Re < 2300
- Régimen turbulento Re > 3000
- Régimen transición 2300 < Re < 3000

Para el presente proyecto se considera un régimen permanente ya que los diámetros de cañerías a utilizar y la velocidad requerida son relativamente grandes, lo que conlleva un Reynolds elevado.

Pérdida regular en régimen turbulento. En este caso se consideran dos factores que determinan dicha pérdida:

- El rozamiento entre moléculas del fluido en movimiento.
- El rozamiento del fluido con la pared para superficies rugosas

Las pérdidas regulares se calculan por medio de la siguiente fórmula:

$$\Delta_{Regular=f*\frac{L}{d_0}*\frac{\vec{v}^2}{2*g}}$$
 (20)

Donde:

 \vec{v} = velocidad media del escurrimiento [m/s]

L= longitud característica [m]

 d_0 =diámetro [m]

g= aceleración de gravedad $[m/s^2]$

f = factor de fricción

La velocidad sobre una superficie es cero para todo fluido viscoso, luego el rozamiento se debe sólo al efecto de la rugosidad de la superficie [12]. Esta se define como ε y se mide en (mm) para diferentes materiales. Sus valores están a continuación en la figura IV_5.2:

8 · · · · · · · · · · · · · · · · · · ·						
Condición	ft	mm	Incertidumbre, %			
Lámina metálica, nueva	0,00016	0,05	±60			
Inoxidable	0,000007	0,02	±50			
Comercial, nuevo	0,00015	0,046	±30			
Estriado	0,01	3,0	±70			
Oxidado	0.007	2,0	±50			
Fundido, nuevo	0,00085	0,26	±50			
Forjado, nuevo	0,00015	0,046	±20			
Galvanizado, nuevo	0,0005	0,15	±40			
Fundido asfáltico	0,0004	0,12	±50			
Laminado	0.000007	0,002	±50			
Tubo laminado	0,000005	0,0015	±60			
	Liso	Liso				
Liso	0,00013	0,04	±60			
Rugoso	0,007	2,0	±50			
Liso	0,000033	0,01	±60			
En duelas	0.0016	0.5	±40			

Figura IV_5.2. Rugosidad superficial de distintos materiales [12]

Para poder calcular el coeficiente de fricción hay diferentes alternativas. Una de ellas es obtenerla por medio del ábaco de Moody (Figura IV_5.3): en él se obtiene el coeficiente de fricción en función del Reynolds y la relación entre la aspereza y diámetro de la cañería como se muestra a continuación

Figura IV_5.3. Ábaco de Moody [12]

Otro método para obtener el factor de fricción, el cual se utiliza en el proyecto, es por medio de la fórmula que se muestra a continuación, la cual solo sirve para cañerías lisas:

$$\frac{1}{\sqrt{f}} = (0.86 * \ln(Re * \sqrt{f})) - 0.8$$
 (21)

Pérdidas singulares

Corresponde a las pérdidas locales que se presentan en circuitos por los accesorios requeridos para su trazado y/u operación. Son debidas a cambios de dirección de las líneas de corriente, turbulencias, torbellinos y otros efectos que originan la presencia de: codos, válvulas, contracciones, expansiones, etc. [12]

La evaluación de estas pérdidas se realiza bajo el concepto que la pérdida es proporcional a una altura de velocidad, donde la constante de proporcionalidad se define como K. Luego, la fórmula para obtener las pérdidas es la siguiente:

$$\Delta_{Singulares} = K * \frac{\vec{v}^2}{2*g}$$
(22)

Donde:

 \vec{v} = velocidad media del escurrimiento [m/s]

g= aceleración de gravedad $[m/s^2]$ K= depende del tipo de accesorio y su valor (Ver anexo)

5.2 Cálculo de pérdidas para diferentes números de colectores

Para este cálculo solo se considerarán las pérdidas regulares, ya que su desarrollo es exclusivamente para determinar el número de paneles más adecuado para la parcela (Hectárea de paneles solares). Se utilizará el catálogo de cañerías HDPE (Dimensiones tubería HDPE PE 100, norma ISO 4427, ver Anexo) para la elección del diámetro de cañerías.

En el procedimiento se procederá a calcular las pérdidas para diferentes tamaños de parcelas 200, 500, 1.000 y 2.000 paneles solares y así identificar cuál es la cantidad de paneles más favorable y organizar los 85.000 con esa configuración.

5.2.1 Pérdidas para 200 parcelas

Flujo :
$$v = Caudal_{colector} * Área * N^{\circ} paneles$$
 (23)

$$\dot{v} = 20 \left[\frac{lt}{h * m^2} \right] * 2,54[m^2] * 200 = 10160 \left[\frac{lt}{h} \right] = 2,822 \left[\frac{lt}{s} \right]$$

<u>Caudal</u>

 $Q = A * \vec{\nu} \tag{24}$

$$2,822 * 10^{-3} = \frac{\pi}{4} * \emptyset_{int}^2 * 1 \to \emptyset_{int} = 0,06[m]$$

Se escoge cañería HDPE

PN 10 ;
$$\phi_n = 75[mm]$$
 ; $e = 4,5[mm]$; $\phi_{int} = 66[mm]$

Nueva velocidad

$$\vec{v} = \frac{Q}{A} = \frac{0,002822}{\frac{\pi}{4} * 0,066^2} = 0,824[m/s]$$

<u>Reynolds</u>

$$Re = \frac{\vec{v} * \phi_{int}}{v} = \frac{0.824 * 0.066}{10^{-6}} = 54384$$

Factor de Fricción

$$\frac{1}{\sqrt{f}} = (0.86 * \ln Re * \sqrt{f}) - 0.8 \rightarrow \frac{1}{\sqrt{f}} = (0.86 * \ln 54384 * \sqrt{f}) - 0.8$$
$$f = 0.02$$

$$P\acute{e}rdidas = \frac{f * L * \vec{v}^2}{2 * g * \emptyset} = \frac{0.02 * 114 * 0.824^2}{2 * 9.8 * 0.066} = 1.196[m]$$

5.2.2 Pérdidas para 500 parcelas

$$\dot{v} = 20 * 2,54 * 500 = 25400 \left[\frac{lt}{h} \right] = 7,055 \left[\frac{lt}{s} \right]$$

<u>Caudal</u>

$$Q = A * \vec{v}$$
7,055 * 10⁻³ = $\frac{\pi}{4} * \phi_{int}^2 * 1 \rightarrow \phi_{int} = 0,0947[m]$

Se escoge cañería HDPE

PN 10 ;
$$\phi_n = 110[mm]$$
 ; $e = 6,6[mm]$; $\phi_{int} = 96,8[mm]$

Nueva velocidad

$$\vec{v} = \frac{Q}{A} = \frac{0,007055}{\frac{\pi}{4} * 0,0968^2} = 0,958[m/s]$$

<u>Reynolds</u>

$$Re = \frac{\vec{v} * \phi_{int}}{v} = \frac{0.958 * 0.0968}{10^{-6}} = 92796.5$$

$$\frac{1}{\sqrt{f}} = (0.86 * \ln Re * \sqrt{f}) - 0.8 \to \frac{1}{\sqrt{f}} = (0.86 * \ln 92796.5 * \sqrt{f}) - 0.8$$
$$f = 0.018$$

$$P\acute{e}rdidas = \frac{f * L * \vec{v}^2}{2 * g * \emptyset} = \frac{0,018 * 285 * 0,95^2}{2 * 9,8 * 0,0968} = 2,44[m]$$

5.2.3 Pérdidas para 1000 parcelas

$$\dot{v} = 20 * 2,54 * 1000 = 50800 \left[\frac{lt}{h} \right] = 14,11 \left[\frac{lt}{s} \right]$$

<u>Caudal</u>

$$Q = A * \vec{v}$$
14,11 * 10⁻³ = $\frac{\pi}{4} * \phi_{int} * 1 \rightarrow \phi_{int}^{2} = 0,134[m]$

Se escoge cañería HDPE

 $PN\,10$; ${\it \emptyset}_n=160[mm]$; $e=9{,}5[mm]\,$; ${\it \emptyset}_{int}=141[mm]\,$

Nueva velocidad

$$\vec{v} = \frac{Q}{A} = \frac{0,01411}{\frac{\pi}{4} * 0,141^2} = 0.9[m/s]$$

Reynolds

$$Re = \frac{\vec{v} * \phi_{int}}{v} = \frac{0.9 * 0.141}{10^{-6}} = 126900$$

$$\frac{1}{\sqrt{f}} = (0.86 * \ln Re * \sqrt{f}) - 0.8 \to \frac{1}{\sqrt{f}} = (0.86 * \ln 126900 * \sqrt{f}) - 0.8$$
$$f = 0.017$$

$$P\acute{e}rdidas = \frac{f * L * \vec{v}^2}{2 * g * \emptyset} = \frac{0.017 * 570 * 0.9^2}{2 * 9.8 * 0.141} = 2.84[m]$$

5.2.4 Pérdidas para 2000 parcelas

$$\dot{v} = 20 * 2,54 * 2000 = 101600 \left[\frac{lt}{h} \right] = 28,22 \left[\frac{lt}{s} \right]$$

<u>Caudal</u>

 $Q = A * \vec{v}$

$$28,22 * 10^{-3} = \frac{\pi}{4} * \phi_{int}^{2} * 1 \to \phi_{int} = 0,189[m]$$

Se escoge cañería HDPE

PN 10 ;
$$\phi_n = 225[mm]$$
 ; $e = 13,4[mm]$; $\phi_{int} = 198[mm]$

Nueva velocidad

$$\vec{v} = \frac{Q}{A} = \frac{0,02822}{\frac{\pi}{4} * 0,198^2} = 0,916[m/s]$$

Reynolds

$$Re = \frac{\vec{v} * \phi_{int}}{v} = \frac{0.916 * 0.198}{10^{-6}} = 181469$$

$$\frac{1}{\sqrt{f}} = (0.86 * \ln Re * \sqrt{f}) - 0.8 \to \frac{1}{\sqrt{f}} = (0.86 * \ln 181469 * \sqrt{f}) - 0.8$$
$$f = 0.016$$

$$P\acute{e}rdidas = \frac{f * L * \vec{v}^2}{2 * g * \emptyset} = \frac{0,016 * 1140 * 0,916^2}{2 * 9,8 * 0,198} = 3,94[m]$$

Se puede deducir, de los cálculos realizados, que el aumento de 500 a 1.000 paneles es donde se produce la menor pérdida (regular), en relación al aumento de paneles y pérdidas, por lo que el número de paneles debe ser alrededor de 1.000. Al ser 85.000 los paneles solares a instalar, estos se ordenarán en parcelas de aproximadamente una hectárea para establecer una configuración más amigable, tanto para el esquema de su diseño como para los cálculos que sean necesarios.

Ya establecidas las distancias tanto horizontal como verticalmente entre los colectores solares (Figura N°16), las parcelas de una hectárea cada una, aproximadamente, se configurarán de 16 [m]* 625[m]. De ésta forma, se contemplan los 10 paneles horizontales con su respectiva separación y espacio para conexiones y 110 niveles de paneles solares con las mismas características y espacios para así obtener una cantidad de 1.100 paneles los cuales entran en el rango de las pérdidas calculadas por cada hectárea.

Teniendo en cuenta esta configuración de paneles solares aproximadamente se necesitará 78 hectáreas para los 85.000 paneles.

5.3 Cálculos Pérdidas en Cañería

Para el desarrollo de los cálculos de pérdidas en la configuración de los 85.000 paneles solares, se diseña un circuito representativo en el que se contempla, para efectos de cálculo, solo la mitad de éstos con el fin de simplificar los cálculos. Luego se considera como una planta "espejo".

En el circuito que se muestra a continuación, en la figura N°20, se puede identificar un manifold exterior que suministra el total del flujo hacia los paneles solares, el cual es impulsado por una bomba desde un estanque de acumulación (para el buen funcionamiento de ésta). El flujo que viene por el manifold exterior se bifurca 5 veces hacia otros manifold interiores que suministran, a su vez, el fluido a cada parcela de paneles solares.

Para el cálculo de pérdidas de carga en las cañerías (como el caudal va disminuyendo en cada bifurcación un 20 % respectivamente) el caudal disminuye en cada salida para que el desarrollo de los cálculos sea más próximo a la realidad. Lo mismo ocurre con el diámetro de las cañerías, sin embargo, el diámetro de estas se modifica cada 2 bifurcaciones para el manifold exterior. En cuanto a las pérdidas en el manifold interior solo se contempla una reducción de diámetro que se efectuará en la mitad del desplazamiento del fluido (cuarta Tee). En cuanto al caudal se disminuirá en cada bifurcación (8).

Para la elección del diámetro de las cañerías se tendrá en cuenta la facilidad de obtención de los diferentes diámetros y de esta forma no tener un gasto innecesario en la búsqueda en el mercado. También un factor de seguridad (10%) sobre las pérdidas totales, con el fin de sustituir las pérdidas generadas por accesorios no contemplados como es el caso de filtros, válvulas reguladoras de flujo, estanques de expansión entre otras restricciones en el flujo.

Figura IV_5.4. Configuración hectáreas de paneles solares. (Elaboración propia). A: Estanque de $\emptyset = 48$ ". Llegada de agua-glicol caliente desde parcelas para posterior retorno. Y salida de agua caliente a intercambiadores de calor de electrolito-**I.C.E**: Intercambiador de calor electrolito-**B.1.2**: Bomba recirculadora de agua-glicol hacia paneles solares-**B.3.4**: Bomba recirculadora de agua-glicol a intercambiadores de calor electrolito.

5.3.1 Pérdidas en manifold exterior <u>Pérdidas regulares</u> (primeros 15 metros)

<u>Caudal</u>

Flujo : $v = Caudal_{colector} * Área * N^{\circ} paneles$

$$\dot{v} = 20 \left[\frac{lt}{h * m^2} \right] * 2,54[m^2] * 42500 = 2159000 \left[\frac{lt}{h} \right] = 0,5997 \left[\frac{m^3}{s} \right]$$

Diámetro

Se considera una velocidad $\vec{v} = 3[m/s]$

$$Q = A * \vec{v}$$

$$0,599 = \frac{\pi}{4} * \phi_{interior}^{2} [m^{2}] * 3[m/s]$$

$$\phi_{interior} = 0,505[m]$$

Se considera un diámetro de cañería de $\phi = 24'' = 630[mm]$, espesor e = 37,4[mm] y PN 10 de cañería HDPE de alta densidad PE 100

Nueva velocidad

$$\vec{v} = \frac{Q}{A} = \frac{0,599}{\frac{\pi}{4} * 0,5552^2} = 2,477[m/s]$$

Reynolds

$$Re = \frac{\vec{v} * \phi_{int}}{v} = \frac{2,477 * 0,5552}{10^{-6}} = 1375343,47$$

Factor de fricción

$$\frac{1}{\sqrt{f}} = (0.86 * \ln Re * \sqrt{f}) - 0.8 \rightarrow \frac{1}{\sqrt{f}} = (0.86 * \ln 1375343.47 * \sqrt{f}) - 0.8$$
$$f = 0.0112$$

$$P\acute{e}rdidas = \frac{f * L * \vec{v}^2}{2 * g * \emptyset} = \frac{0.0112 * 15 * 2.477^2}{2 * 9.8 * 0.5552} = 0.0947[m]$$

Pérdidas singulares

- 1 Válvula de compuerta K=0,1
- 1 Válvula anti retorno K=4,1
- 1 Tee K=0,72

$$\begin{split} \Delta_{Singulares} &= 0.1 * \frac{2,477^2}{2*9,8} + 4,1 * \frac{2,477^2}{2*9,8} + 0,72 * \frac{2,477^2}{2*9,8} \\ \Delta_{Singulares} &= 0,031 + 1,28 + 0,225 \\ \Delta_{Singulares} &= 1,54[m] \end{split}$$

Luego

$$\sum P \acute{e}r didas_{Primer Tramo} = 0,0947 + 1,54 = 1,6347 [m. c. a.]$$

A continuación, en la tabla IV_5.1, se muestran las pérdidas a lo largo de todo el manifold exterior utilizando el mismo método desarrollado anteriormente y con las especificaciones detalladas al inicio del capítulo.

Manifold Exterior		635 [m]primera y segunda tee	635 [m] segunda y tercera tee	635 [m]tercera y cuarta tee	635 [m]cuarta y quinta tee
Caudal	m^3/s	0,4798	0,3598	0,24	0,1199
Diámetro Nominal	m (in)	0,63	0,5	0,5	0,315
Espesor	m	0,0374	0,0297	0,0297	0,0187
Diámetro Interior	m	0,5552	0,4406	0,4406	0,2776
Nueva Velocidad	m/s	1,982	2,36	1,573	1,982
Reynold		1100274,78	103942,07	693228,05	550137,39
Factor de Fricción		0,0116	0,0118	0,01266	0,0131
Pérdidas Regulares	m	2,67	4,83	2,303	6,005
Pérdidas Singulares	m	0,1443	0,204	0,09	0,156
Pérdida Total	m	2,8143	5,034	2,393	6,161

Tabla IV_5.1. Pérdidas manifold Exterior. (Elaboración propia)

Pérdida total manifold Exterior

 $\sum P$ érdidas_{Manifold Exterior}

 $= \sum P \acute{e}r didas_{Primer Tramo} + \sum P \acute{e}r didas_{Segundo Tramo} + \sum P \acute{e}r didas_{Tercer Tramo} + \sum P \acute{e}r didas_{Cuarto Tramo} + \sum P \acute{e}r didas_{Ouinto Tramo}$

 $\sum P \acute{e}rdidas_{Manifold\ Exterior} = 1,647 + 2,8188 + 5,036 + 2,393 + 6,161$

 $\sum P \acute{e}r didas_{Manifold \, Exterior} = 18,0435 \, [m. c. a]$

5.3.2 Pérdidas en manifold interior *Pérdidas regulares a Primeras Tee*

<u>Caudal</u>

Flujo : $v = Caudal_{colector} * Área * N^{\circ} paneles$

$$\dot{v} = 20 \left[\frac{lt}{h * m^2} \right] * 2,54 [m^2] * 8800 = 447040 \left[\frac{lt}{h} \right] = 0,1242 \left[\frac{m^3}{s} \right]$$
<u>Diámetro</u>

Se considera una velocidad $\vec{v} = 3[m/_S]$

$$Q = A * \vec{v}$$

0,1242 = $\frac{\pi}{4} * \emptyset^2[m^2] * 3[m/s]$
 $\emptyset = 0,230[m]$

Se considera un diámetro de cañería de $\phi = 10^{\prime\prime} = 280[mm]$, espesor e = 16,6[mm] y PN 10 de cañería HDPE de alta densidad PE 100

Nueva velocidad

$$\vec{v} = \frac{Q}{A} = \frac{0,1242}{\frac{\pi}{4} * 0,2468^2} = 2,596[m/s]$$

<u>Reynolds</u>

$$Re = \frac{\vec{v} * \phi_{int}}{v} = \frac{2,596 * 0,2468}{10^{-6}} = 640632,86$$

Factor de fricción

$$\frac{1}{\sqrt{f}} = (0.86 * \ln Re * \sqrt{f}) - 0.8 \rightarrow \frac{1}{\sqrt{f}} = (0.86 * \ln 640632.86 * \sqrt{f}) - 0.8$$
$$f = 0.0128$$

$$P\acute{e}rdidas = \frac{f * L * \vec{v}^2}{2 * g * \emptyset} = \frac{0.0128 * 5 * 2.596^2}{2 * 9.8 * 0.2468} = 0.089[m]$$

Pérdidas singulares

- 1 Válvula de compuerta K=0,11
- 1Tee K=0,84

$$\Delta_{Singulares} = 0.11 * \frac{2.596^2}{2 * 9.8} + \left(0.84 * \frac{2.596^2}{2 * 9.8}\right)$$
$$\Delta_{Singulares} = 0.0378 + 0.288$$
$$\Delta_{Singulares} = 0.3266[m]$$

Luego

$$\sum P \acute{e}r didas_{A \, primera \, tee} = 0,089 + 0,3266 = 0,4156 \, [m. \, c. \, a. \,]$$

A continuación en las tablas IV_5.2 y IV_5.3 se muestran las pérdidas a lo largo del manifold interior utilizando el mismo método desarrollado anteriormente y con las especificaciones detalladas al inicio del capítulo.

Manifold Interior		Segunda tee	Tercera tee	Cuarta tee	Quinta tee
Caudal	m^3/s	0,1087	0,0931	0,0776	0,0621
Diámetro Nominal	m (in)	0,28	0,28	0,28	0,2
Espesor	m	0,0166	0,0166	0,0166	0,0119
Diámetro Interior	m	0,2468	0,2468	0,2468	0,1762
Nueva Velocidad	m/s	2,271	1,947	1,622	2,546
Reynold		560553,76	480474,65	400395,54	448661,15
Factor de Fricción		0,0131	0,0135	0,0139	0,0136
Pérdidas Regulares	m	0,07	0,052	0,0378	0,1276
Pérdidas Singulares	m	0,221	0,162	0,112	0,2778
Pérdida Total	m	0,291	0,214	0,1498	0,4054

Figura IV 5.2. Pérdidas Manifold interior. (Elaboración Propia)

Figura IV_5.3. Pérdidas manifold interior. (Elaboración Propia)

Manifold Interior	Secta tee	Séptima tee	Ovtava tee	
Caudal	m^3/s	0,0466	0,031	0,0155
Diámetro Nominal	m (in)	0,2	0,2	0,2
Espesor	m	0,0119	0,0119	0,0119
Diámetro Interior	m	0,1762	0,1762	0,1762
Nueva Velocidad	m/s	1,91	1,273	0,637
Reynold		336495,87	224330,58	112165,29
Factor de Fricción		0,0144	0,01559	0,0179
Pérdidas Regulares	m	0,076	0,0365	0,01
Pérdidas Singulares	m	0,1563	0,0694	0,01739
Pérdida Total	m	0,2323	0,1059	0,02739

<u>Pérdida total</u>

 $\sum P \acute{e}rdidas_{Manifold\ Interior} = \sum P \acute{e}rdidas_{A\ las\ 8\ tee}$

 $\sum P$ érdidas_{Manifold Interior}

= 0,4156 + 0,291 + 0,214 + 0,15 + 0,4054 + 0,232 + 0,1059 + 0,2739

 $\Sigma P \acute{e}rdidas_{Manifold Interior} = 2,0878[m.c.a]$

5.3.3 Pérdidas en Parcela de paneles

Se considera un diámetro de cañería de $\phi = 6'' = 160[mm]$ HDPE con espesor e = 9,5[mm] y una velocidad $\vec{v} = 3[m/s]$

Pérdidas regulares

<u>Flujo</u>

$$\dot{v} = 20 * 2,54 * 1000 = 55880 \left[\frac{lt}{h} \right] = 0,0155 \left[\frac{m^3}{s} \right]$$

<u>Caudal</u>

$$Q = A * \vec{v}$$

0,0155 = $\frac{\pi}{4} * 0,1404^2 [m^2] * \vec{v}$
 $\vec{v} = 1[m/s]$

<u>Reynolds</u>

$$Re = \frac{\vec{v} * \phi_{int}}{v} = \frac{1 * 0,1404}{10^{-6}} = 140400$$

$$\frac{1}{\sqrt{f}} = (0.86 * \ln Re * \sqrt{f}) - 0.8 \to \frac{1}{\sqrt{f}} = (0.86 * \ln 140400 * \sqrt{f}) - 0.8$$
$$f = 0.0171$$

$$P\acute{e}rdidas = \frac{f * L * \vec{v}^2}{2 * g * \emptyset} = \frac{0.0171 * 625 * 1^2}{2 * 9.8 * 0.1404} = 3.883[m. c. a.]$$

Pérdidas singulares

- 1 Válvula de compuerta K=0,12
- 109 Tee K=0,9
- 1 Codo de 90 K=0,45

$$\begin{split} \Delta_{Singulares} &= 0,12 * \frac{1^2}{2*9,8} + 109 * \left(0,9 * \frac{1^2}{2*9,8}\right) + 0,45 * \frac{1^2}{2*9,8} \\ \Delta_{Singulares} &= 0,006 + 109 * 0,046 + 0,023 \\ \Delta_{Singulares} &= 5,04[m.\,c.\,a] \end{split}$$

Luego

$$\sum P \acute{e}rdidas_{Parcela} = 3,883 + 5,04 = 8,925 [m. c. a.]$$

5.3.4 Pérdidas en los paneles

Se considera un diámetro de cañería de $\phi = 3/4'' = 25[mm]$ HDPE con espesor e = 2,3[mm]

Pérdidas regulares

<u>Flujo</u>

$$\dot{v} = 20 * 2,54 * 10 = 508 \left[\frac{lt}{h} \right] = 0,000141 \left[\frac{m^3}{s} \right]$$

<u>Caudal</u>

$$Q = A * \vec{v}$$

0,000141 = $\frac{\pi}{4} * 0,0204^2 [m^2] * \vec{v}$
 $\vec{v} = 0,43 [m/s]$

.

<u>Reynolds</u>

$$Re = \frac{\vec{v} * \phi_{int}}{v} = \frac{0.43 * 0.0204}{10^{-6}} = 8772$$

$$\frac{1}{\sqrt{f}} = (0.86 * \ln Re * \sqrt{f}) - 0.8 \rightarrow \frac{1}{\sqrt{f}} = (0.86 * \ln 8772 * \sqrt{f}) - 0.8$$
$$f = 0.0326$$

$$P\acute{e}rdidas = \frac{f * L * \vec{v}^2}{2 * g * \emptyset} = \frac{0,0326 * 16 * 0,43^2}{2 * 9,8 * 0,0204} = 0,241[m.c.a.]$$

Pérdidas singulares

- 1 Válvula de compuerta K=0,45
- 9 Tee K=1,5
- 1 Codo de 90 K=0,75
- 10 Paneles solares $\Delta_{panel} = 0,1 [m.c.a]$

$$\Delta_{Singulares} = 0,45 * \frac{0,43^2}{2*9,8} + 9 * \left(1,5 * \frac{0,43^2}{2*9,8}\right) + 0,75 * \frac{0,43^2}{2*9,8} + 10 * 0,1$$

$$\Delta_{Singulares} = 0,004 + 9 * 0,014 + 0,007 + 1$$

$$\Delta_{Singulares} = 1,138[m.c.a]$$

Luego

$$\Sigma P \acute{e}rdidas_{Paneles} = 1,138 + 0,241 = 1,379[m.c.a.]$$

Pérdida Total

$$\sum P \acute{e}r dida \ de \ Carga \ total$$

$$= \sum P \acute{e}r didas_{Manifold \ Exterior} + \sum P \acute{e}r didas_{Manifold \ Interior}$$

$$+ \sum P \acute{e}r didas_{Parcela} + \sum P \acute{e}r didas_{Paneles}$$

$$\sum P \acute{e}r dida \ de \ Carga \ total = 18,0435 \ + 2,0878 \ + 8,925 \ + 1,379$$
$$\sum P \acute{e}r dida \ de \ Carga \ total = 30,4353 \ [m. c. a]$$

Se debe tomar en cuenta el retorno del flujo desde los paneles y el factor de seguridad establecido anteriormente.

$$\sum P \acute{e}r dida \ de \ carga = 30,4353 * 2 * 1,1 = 66,9577 \ [m.c.a]$$

6 Potencia de la bomba

$$N_b = \frac{\gamma * \dot{V} * H_b}{\eta_{bomba} * 75} \quad [HP]$$
(24)

Donde:

 γ = Peso específico del fluido $\begin{bmatrix} kg \\ m^3 \end{bmatrix}$ \dot{V} = Flujo volumétrico $\begin{bmatrix} m^3/s \end{bmatrix}$ H_b = Altura bomba [m] η_{bomba} = Rendimiento bomba [%]

$$N_b = \frac{1018 * 0.6 * 66,9577}{0.75 * 75} = 727,071 \ [HP]$$
$$N_b = 542,177 \ [kW]$$

7 Elección bomba Recirculadora Agua-glicol

Con el valor de la altura y potencia ya calculados se procede a la elección de la bomba para lo cual se considerará la restricción, como cota superior, de no superar los 250 [kW] para permanecer dentro del rango de una central de baja tensión. Se selecciona una bomba marca Cornell con las siguientes características:

- Modelo: 8H
- Diámetro descarga: 8"
- Máxima capacidad: 1226 $\begin{bmatrix} m^3/_h \end{bmatrix}$
- Altura: 92,96 [m]
- Altura de succión: 7, 6 [m]

Se instalarán 4 bombas en paralelo y una "stand by" (contemplando las 5 bombas para la mitad de los paneles instalados), con el fin de alcanzar el caudal seleccionado y asegurar el continuo funcionamiento de la planta en caso de averío o mantención de una de ellas.

8 Elección bomba alimentación I.C.E.

Para la alimentación de los intercambiadores de calor de electrolito se utilizarán 4 bombas de 125 [Kw] de potencia que llevarán el fluido de agua-glicol hacia los intercambiadores. Las bombas se dispondrán en pares, 2 para cada salida a un intercambiador, manteniendo una en funcionamiento y otra "stand by" para asegurar el funcionamiento continuo.

9 Intercambiadores de Calor

Los intercambiadores a instalar, para el intercambio de calor entre el fluido calo portador y el electrolito, serán los mismos utilizados en la configuración actual del proyecto. De esta manera, estos equipos serán de fácil adquisición y no se incurrirá en gastos excesivos de diseño y cálculos de nuevos intercambiadores que soporten las cargas y variaciones de volumen, entre otras restricciones, de los fluidos a utilizar.

V Evaluación Económica

Para la evaluación económica del proyecto se considera que el terreno es parte de la concesión que posee la planta en estudio y que no está contemplado para ningún tipo de proyecto próximo (exceptuando el proyecto en estudio), por lo que los gastos de terreno ya son costeados por la planta y no serán considerados.

Los costos de equipos, materiales, accesorios, etc. fueron estudiados y cotizados con diferentes distribuidores por lo que pudieran variar con respecto a otros valores en el mercado. De esta manera, se obtiene un valor más cercano a la realidad, donde cada producto tiene su propio proveedor. El número, la cantidad y las dimensiones de equipos, materiales, accesorios entre otros, puede variar en etapas más avanzadas y detalladas de estudio del proyecto, lo cual puede influir en el aumento o disminución de los costos.

El costo de los equipos, cañerías y accesorios se muestran a continuación en las tablas V_1.1, V_1.2 y V_1.3:

Equipos	cantidad	Precio en pesos	Total
Paneles solares	85000	\$ 308.615,55	\$ 26.232.322.158
Estructura soporte (para 6 paneles)	85000	\$ 86.440,27	\$ 7.347.422.950,00
Intercambiador de calor Electrolito	2	\$ 80.000.000,00	\$ 160.000.000,00
Bomba recirculadora de agua-glicol	10	\$ 100.000.000,00	\$ 1.000.000.000,00
Bomba alimentación I.C.E.	4	\$ 50.000.000,00	\$ 200.000.000,00
			\$ 34.939.745.108,00

Tahla V	11	Costo	de e	aui	nns	еn	nesos	(Flahoro	ición	nro	nia)
	T • T •	COSto	uc c	yuı	pos	CII	pesos.		CION	piu	piu	,

Tabla V_1.2. Largos totales y costo de cañerías a utilizar. (Elaboración propia)

Diámetro Cañería	Distancia [m]	Distancia total [m]	Precio	[USD/m]	Total [USD]	Total [Pesos]
48''	3	3	\$	923,21	\$ 2.769,6	\$ 1.736.474,92
24''	650	2600	\$	366,37	\$ 952.562,0	\$ 597.227.797,14
20''	1270	5080	\$	230,97	\$ 1.173.327,6	\$ 735.641.205,37
12''	635	2540	\$	91,60	\$ 232.664,0	\$ 145.873.348,08
10''	68	272	\$	72,32	\$ 19.671,0	\$ 12.333.151,95
8''	44	176	\$	36,27	\$ 6.383,5	\$ 4.002.275,53
6''	1875	146250	\$	23,24	\$ 3.398.850,0	\$ 2.130.976.984,50
3/4''	1760	137280	\$	0,87	\$ 119.433,6	\$ 74.881.284,19
					\$ 5.905.661,4	\$ 3.702.672.521,69

0	2
ð	3

		Cantidad pesos	
Accesorios	Cantidad	chilenos	Total
Válvula de mariposa 24''	6	\$ 3.725.456	\$ 22.352.734
Válvula de mariposa 10"	20	\$ 304.707,4	\$ 6.094.148
Válvula de compuerta 6''	160	\$ 56.673,17	\$ 57.067.708
Válvula de compuerta 3/4"	17160	\$ 3.303,54	\$ 56.688.685
Válvula Check o Anti retorno 8"	10	\$ 7.228.964,10	\$ 72.289.641
Válvula Check o Anti retorno 4"	2	\$ 3.614.482,05	\$ 7.228.964
Tee 24"	8	\$ 59.762,15	\$ 478.097
Tee 20"	8	\$ 32.329,08	\$ 258.633
Tee 12"	4	\$ 9.211,44	\$ 36.846
Tee 10"	80	\$ 6.117,35	\$ 489.388
Tee 8"	80	\$ 3.669,66	\$ 293.572
Tee 6"	8502	\$ 2.252,70	\$ 19.152.483
Tee 3/4"	171600	\$ 911,61	\$ 156.433.028
Codo 90° 6"	312	\$ 1.626,99	\$ 507.620
Codo 90° 3/4"	17160	\$ 344,83	\$ 5.917.343
Válvula reguladora de flujo 10"	20	\$ 8.164.710,60	\$ 163.294.212
Medidor de caudal 10"	20	\$ 915.376,20	\$ 18.307.524
Termómetro	1	\$ 38.700,00	\$ 38.700
manómetro	1	\$ 64.990,00	\$ 64.990
			\$ 586.994.315

Tabla V_1.3. Costo y cantidad de accesorios a utilizar para el proyecto. (Elaboración Propia)

Para el cálculo de la evaluación económica se emplea el "Análisis del ciclo de vida de instalaciones y sistemas norma ASTM E917" (cuyas expresiones se encuentran en el Anexo) utilizándose las siguientes características: el horizonte de evaluación del proyecto tendrá una duración de 20 años, asumiendo una tasa de escalamiento de combustible de un 4% anual y tasa de descuento de 8% anual.

Con respecto al costo de operación y mantención de los equipos, se considera un 2% de la inversión inicial y se contemplan gastos de reemplazo a lo largo de los 20 años, los cuales ocurrirán en el año 6, 12 y 18 considerando un 3%, 5% y 4% respectivamente de la inversión inicial. Los equipos serán considerados con una depreciación lineal de 25 años por lo que el valor residual se encontrará cerca del 20% de la inversión inicial.

A continuación, en la tabla V_1.4 se muestran estos valores más el costo de consumo de combustible utilizado para la planta en estudio, utilizando el proyecto, como para sin él.

Tabla V_1.4. Parámetros para proyecto. (Elaboración Propia)

Costo M&O	2%
Horizonte de Evaluación (años)	20
Tasa de descuento	8%
Tasa escalamiento combustible	4%
Costo de combustible sin proyecto	\$ 10.784.898,35
Costo combustible con proyecto	\$ 2.439.444,56
Costo reemplazo c/r a la inversión año 6	3%
Costo reemplazo c/r a la inversión año 12	5%
Costo reemplazo c/r a la inversión año 18	4%
depreciación 25 años lineal c/r inversión	20%

A continuación en la tabla V_1.5 se observan los costos estimados para la planta en estudio, con respecto al consumo de combustible, utilizando el proyecto solar

Tabla V_1.5. Costos estimados para 20 años con la incorporación de proyecto solar. (Elaboración propia)

Con proyecto solar	Dólares	Pesos
Inversión Inicial	\$ 62.569.838,98	\$ 39.229.411.944,93
Costo instalación (30%)	\$ 18.770.951,69	\$ 11.768.823.583,48
Inversión	\$ 81.340.790,67	\$ 50.998.235.528,41
Costo O&M (2%)	\$ 1.626.815,81	\$ 1.019.964.710,57
Costo O&M (2%) 20 años al presente	\$ 15.972.317,46	\$ 10.014.163.878,76
Reemplazo 1 (3%)	\$ 2.440.223,72	\$ 1.529.947.065,85
Al presente	\$ 1.537.754,87	\$ 964.126.171,64
Reemplazo 2 (5%)	\$ 4.067.039,53	\$ 2.549.911.776,42
Al presente	\$ 1.615.077,36	\$ 1.012.605.049,75
Reemplazo 3 (4%)	\$ 3.253.631,63	\$ 2.039.929.421,14
Al presente	\$ 814.218,16	\$ 551.329.585,67
Costo Energía Anual	\$ 2.439.444,56	\$ 1.529.458.555,26
Costo energía al presente	\$ 33.609.105,63	\$ 21.071.900.958,74
Valor residual	\$ 16.268.158,13	\$ 10.199.647.105,68
Valor residual al presente	\$ 3.490.304,17	\$ 10.199.647.105,68
Total	\$ 131.398.959,98	\$ 74.412.714.067,28

Se observa en la tabla V_1.5 que el costo total durante los 20 años de duración del proyecto es de US\$131.398.959,98

Para el análisis de costos de la planta en estudio, con respecto al combustible, se utilizan datos similares para los cálculos realizados. La tasa de interés y la tasa de escalamiento del combustible se mantienen en 8% y 4% respectivamente al igual que el horizonte de evaluación. Pero, en cuanto a los costos por reemplazo solo se consideraron 2, los cuales serán para el año 8 y 16, contemplando un costo de US\$ 2.000.000 para cada uno, en los que se consideran accesorios y equipos de bajo costo entre otros.

A continuación en la tabla V_1.6 se pueden observar los costos, con respecto a combustible, de la planta en estudio para los 20 años de duración del proyecto.

Tabla V_1.6. Costos de consumo de combustible y reemplazo de la planta en estudio para 20 años. (Elaboración propia)

Proyecto Actual	Dólares		Pesos	
Reemplazo 2 (5%)	\$	2.000.000,00	\$	1.253.940.000,00
Al presente	\$	1.080.537,77	\$	677.464.765,03
Reemplazo 3 (4%)	\$	2.000.000,00	\$	1.253.940.000,00
Al presente	\$	583.780,94	\$	366.013.132,89
Costo Energía Anual	\$	10.784.898,35	\$	6.761.807.718,83
Costo energía al presente	\$	148.587.426,00	\$	93.159.858.476,16
Total	\$	150.251.744,70	\$	94.203.336.374,08

Se puede observar en la tabla V_1.6 que el costo de la planta en estudio, para 20 años, es de US\$150.251.744,70

Se puede observar un claro ahorro al cabo de los 20 años, con la utilización de un sistema de paneles térmicos, el que torna cerca de los 20.000.000. [US\$] y tomando en cuenta la inversión inicial, el ahorro anual con la utilización de este sistema y el costo de operación y mantención se espera que el retorno de la inversión se encuentre entre los 9 y 10 años desde la implementación del proyecto.

VI Discusión y Conclusión

Es importante siempre tener en cuenta que el rendimiento de una instalación solar nunca es constante, depende de varios factores como la época del año, la ubicación de la instalación, la hora del día y la mantención regular de los paneles, factor indispensable para alcanzar el mayor rendimiento posible. Todas estas características y medidas pueden ser controladas por sistemas computacionales, los cuales ayudan a tomar una mejor decisión a la hora de incorporar una instalación solar en el lugar seleccionado.

Con respecto al estudio realizado se utilizó un sistema estacionario, no computacional que es más eficaz, en base a estadísticas y promedios lo que conlleva a datos no tan precisos pero que son totalmente representativos y coherentes para la presentación a primera escala de un proyecto. Otro de los aspectos que no fueron considerados en el estudio fue las pérdidas de temperatura a través de los ductos, las cuales son perjudiciales para este tipo de proyectos en los cuales las mínimas variaciones de temperatura son de vital importancia y pueden influenciar en la suspensión del proyecto. (Para etapas más avanzadas del proyecto deben ser consideradas).

Si bien los paneles elegidos para este proyecto son los de rango de temperatura más bajo con respecto a toda la gama de paneles solares térmicos, fueron considerados por su "bajo" costo de adquisición (debido a la gran cantidad de paneles a instalar), y su fácil mantención ya que los rangos de temperatura de los paneles satisfacen a los requeridos. Los paneles fueron configurados en paralelo debido a que las temperaturas deseadas no son muy altas (70°C) por lo que otro tipo de distribución podría ser menos eficaz o generar complicaciones a la hora de alguna avería.

En cuanto a los resultados obtenidos, es importante mencionar que la instalación de paneles solares en ningún momento logra satisfacer en su totalidad la demanda energética, por lo que el sistema de calentadores de agua siempre será requerido. No obstante, esta demanda energética puede ser satisfecha en casi un 75% aproximadamente por la instalación solar, lo que en números representa ahorros alrededor de US\$11.000.000 anuales, para la planta en estudio, con respecto al consumo de energía.

El análisis empleado para la comparación de costos de la instalación solar con respecto al sistema actual (Norma ASTM E917) no considera el tipo de financiamiento a utilizar ni para uno ni para el otro sistema en estudio, por lo que solo es de carácter estimativo. Dicho esto, los valores obtenidos en este análisis arrojan resultados muy concluyentes donde la instalación solar aparece como una opción gratamente favorable a la hora de buscar un sistema de ahorro. A primera vista los números con respecto a costos de equipos y en general de materiales son bastante imponentes, generan una gran inversión, pero como se observa, el resultado a través del horizonte de evaluación lo favorece. Es importante señalar que el nivel de la rentabilidad económica está directamente

relacionada al consumo de energía, por lo tanto, a mayor consumo de energía de la planta mayor será la rentabilidad de la instalación.

Aunque estos números son de gran atractivo para cualquier tipo de industria, no se debe tomar la decisión de la introducción de una instalación solar a la ligera. Los valores antes entregados no contemplan los efectos causados en los calentadores de agua, pues siempre es importante tener otras opciones para la generación de energía y más si lo es con energías renovables, la instalación de éstos puede causar una baja en el rendimiento de las calderas produciendo problemas de funcionamiento y por lo mismo más pérdidas que ganancia.

Hay que recalcar que los resultados obtenidos en el estudio, se realizaron con radiaciones menores a la radiación medial anual, por lo que siempre podrá haber una mejora que desarrollar. Esto ayudará que este tipo de proyectos sean de mayor atractivo para las industrias mineras, o de otra índole, y así este tipo de tecnología y energía cada vez sea más considerada para procesos que requerían de un gran consumo energético.

Resulta relevante considerar el escenario en que no habrá ninguna reducción importante en el costo de los colectores solares, el crecimiento del mercado habrá de depender principalmente del costo comparativo de estos sistemas con los que funcionan a base de energía convencional. Por esta razón hace falta un cambio cultural que valore las energías renovables por los beneficios que representan para un país, dejando atrás la asociación de conceptos como escasez, restricción, precios elevados y falta de confort. Las energías renovables son un potente motor económico, el balance de esta tecnología resulta positivo porque se ahorra en la importación y consumo de combustibles fósiles, se generan empleos y se crean empresas especializadas, además de los beneficios ambientes y sociales señalados en este documento.

VI Bibliografía

- 1. Fundamentos de transferencia de calor", Frank P.Incropera, David P.DeWitt
- 2. CNE / PNUD / UTFSM. Irradiancia solar en territorios de la república de Chile.
- Departamento de Geofísica, Universidad de Chile. http://ernc.dgf.uchile.cl/Explorador/Solar2/. [En línea]
- 4. The World Radiation Data Centre. http://wrdc.mgo.rssi.ru/. [En línea]
- 5. Documentación y Manual de Uso, Explorador Solar, Ministerio de Energía 2012.
- 6. Energía solar, Reinaldo Sánchez, 2014
- 7. Evaluación de Recurso Solar, Rodrigo Escobar, 2010
- 8. COCHILCO. Anuario de estadísticas del cobre y otros minerales, 1994-2013.
- Norma técnica, Sistemas Solares Térmicos acogidos a la franquicia tributaria de la Ley Nº 20.365.
- 10. CNE, comisión nacional de energía, www.cne.cl.
- 11. Mecánica de fluidos, capitulo 3, Reinaldo Sánchez Arriagada
- 12. KSB, Programa de válvulas 2009
- 13. La Energía Solar Térmica 2009, tech4cdm.com
- 14. Mesa eficiencia energética, sector: industria y minería, sesión 4.
- 15. Energía Solar y Chile, desafíos y oportunidades, Roberto Román Universidad de Chile
- 16. Proyección Del Consumo De Energía Eléctrica De La Minería Del Cobre En Chile Al 2025, COCHILCO 2015
- 17. Cornell catalog. cornellpump.com
- 18. Simex, Soluciones Hidráulicas e Integrales, Lista de precios Febrero 2015
- 19. Registro solarimétrico Federico Santa María

Anexos

Dimensiones y Pesos

Largo Total	2.190 mm	Peso en
Ancho Total	1.275 mm	Capacid
Fondo	90 mm	Fluido c
Área Total	2,80 m ²	Tª de es
Área de Apertura	2,58 m ²	Flexión
Área del Absorbedor	2,54 m ²	

Peso en vacío	41 Kg
Capacidad del fluido	1,5 I
Fluido caloportador	agua ó agua glicolada
Tª de estancamiento	220 °C
Flexión máxima del captador	1.000 Pa

Presiones de prueba y caudal recomendado

Presión de timbre	14 bar
Presión máxima de trabajo	10 bar
Caudal recomendado	45 l/h⋅m2
Caida de presión (mm.c.a.)	2,24·qi ² +3,72·qi (l/min)

Calidades de fabricación

Absorbedor:	Aleta de aluminio soldada por láser a parrilla de conductos de cobre. Recubrimiento selectivo de titanio de alta eficiencia. Absortividad 0,95 y Emisividad 0,05	
Aislamiento:	Capa de poliuretano rígido inyectado más capa adicional de lana mineral, ambas de 25mm de espesor.	
Vidrio Solar:	Panel único de vidrio solar de 3,2mm de espesor rodeado por una junta de goma de EPDM.	
Parrilla de tubos:	Cobre de 8mm de díametro conectada a tuberías colectoras de 22mm	
Dorso:	Polipropileno negro moldeado.	
Lámina de aluminio:	Adherida al aislamiento actúa como barrera contra pérdidas de calor por el dorso del captador.	
Carcasa:	Aluminio anodizado AL6063-T5.	
Conexiones roscadas:	Conexiones hembra roscadas de 3/4" de bronce	 1275

Curva de rendimiento térmico y certificaciones

CHROMAGEN ESPAÑA S.L.U. Calle Diseño, 6 - Polígono P.I.S.A., 41 927 Mairena del Aljarafe (Sevilla) | España Delegaciones comerciales: Madrid: 661.430.029 | Barcelona: 648.007.661 | Valencia: 648.007.662 | Sevilla: 670.506.297 C.I.F.: B-61668075 | Teléfono: 954.184.541 | Fax: 955.600.457 | E-Mail: chromagen@chromagen.es | www.chromagen.es

Universidad del Bío-Bío. Sistema de Bibliotecas - Chile

CARACTERISTIQUES PHYSIQUES DES FLUIDES THERMIQUES PHYSICAL DATA OF THERMAL FLUIDS

MEG 25%

solution aqueuse de monoéthylène glycol à 25% 25% monoethylene glycol aqueous solution

température de fusion : **-10.9°C** *freezing temperature*

température	masse volum.	chaleur sp	écifique	viscosité dy	/namique	conductivi	té thermique	pression	de vapeur
θ temperature	ρ	Cp specific) c heat	μ dynamic v	iscosity	thermal o	λ conductivity	P vapor p	's ressure
· ·	density	•		-					
°C	kg/m3	J/kg.K	kcal/kg.°C	Pa.s	kg/m.h	W/m.K	kcal/h.m.°C	Pa (abs)	bar(rel.) <i>barg</i>
-10	1048	3713	0,887	0,003186	21,789	0,477	0,410	260	
-5	1046	3719	0,889	0,002704	17,525	0,481	0,414	384	
0	1045	3726	0,890	0,002314	14,319	0,485	0,417	556	
5	1044	3734	0,892	0,001995	11,870	0,489	0,421	795	
10	1042	3742	0,894	0,001733	9,973	0,493	0,424	1119	
15	1040	3751	0,896	0,001516	8,483	0,496	0,426	1555	
20	1038	3760	0,898	0,001334	7,297	0,499	0,429	2134	
25	1036	3770	0,901	0,001182	6,344	0,502	0,431	2892	-0,98
30	1034	3780	0,903	0,001053	5,569	0,504	0,434	3875	-0,97
35	1032	3790	0,906	0,000943	4,933	0,507	0,436	5136	-0,96
40	1030	3801	0,908	0,000849	4,406	0,509	0,438	6738	-0,95
45	1028	3811	0,911	0,000768	3,967	0,511	0,440	8755	-0,93
50	1025	3822	0,913	0,000699	3,596	0,513	0,441	11270	-0,90
55	1023	3833	0,916	0,000638	3,283	0,515	0,443	14381	-0,87
60	1021	3845	0,919	0,000585	3,0 <mark>1</mark> 5	0,517	0,444	18198	-0,83
65	1018	3856	0,921	0,000538	2, <mark>78</mark> 5	0,51 <mark>8</mark>	0,446	22845	-0,78
70	1016	3867	0,924	0,0 <mark>00</mark> 498	2,5 <mark>87</mark>	0, <mark>5</mark> 20	0,447	28462	-0,73
75	1013	3879	0,927	0,000461	2,415	0,521	0,448	35206	-0,66
80	1011	3890	0,929	0,000429	2,265	0,523	0,450	43249	-0,58
85	1008	3902	0,932	0,000401	2,133	0,524	0,451	52783	-0,49
90	1006	3913	0,935	0,000376	2,018	0,525	0,452	64016	-0,37
95	1004	3925	0,938	0,000353	1,916	0,526	0,453	77176	-0,24
100	1001	3936	0,940	0,000332	1,826	0,527	0,454	92513	-0,09
105	999	3948	0,943	0,000314	1,746	0,528	0,454	110293	0,09
110	996	3959	0,946	0,000297	1,675	0,529	0,455	130807	0,29
115	994	3970	0,949	0,000282	1,611	0,530	0,456	154363	0,53
120	991	3982	0,951	0,000268	1,554	0,531	0,457	181293	0,80
125	989	3993	0,954	0,000256	1,503	0,532	0,457	211949	1,11
130	986	4004	0,957	0,000244	1,457	0,532	0,458	246705	1,45
135	984	4015	0,959	0,000234	1,416	0,533	0,458	285957	1,85
140	982	4026	0,962	0,000224	1,379	0,534	0,459	330122	2,29
145	979	4037	0 <u>,96</u> 5	0,000216	1,346	0,534	0,459	379640	2,78
150	977	4048	0,967	0,000208	1,316	0,535	0,460	434971	3,34
15 ₅	975	4059	0 <u>,97</u> 0	0,000200	1,289	0,535	0,460	496596	3,95
160	972	4069	0,972	0,000193	1,264	0,536	0,461	565021	4,64
165	970	4080	0 <u>,</u> 975	0,000187	1,242	0,536	0,461	640768	5,39
170	968	968 4090		0,000181	1,223	0,536	0,461	61 724385 6,2	
175	966	4101	0,980	0,000176	1,205	0,537	0,462	816438	7,15

SERIE No:

1		2	3		4		5	6	
AGUA TRATADA								NE ODERACION 207 I Der	21
À3AG-0622-25DF-001 19	{23}							<u> </u>	
GUAR A3AG-0800-25DF-001 4									
AGUA TRATADA TIBIA						لمرم	·····		SISTEMA DE PREPARACION DE GUAR 400-7M-001
→A3AG-0627-25DF-001 3 →							PRESION DE OPERACION = 207		POR OTROS
AGUA CALIENTE									<u>/2</u>
A3AG-0627-25DF-001 1 SULFATO DE COBALTO									
A3AG-0800-25DF-001 3 -								>	
ACIDO SULFURICO									18
AGUA TRATADA								POR OTROS	
A3AG-0622-25DF-001 17				CAUDAL	ISENO = 30 m3			AGITADOR ESTAN	
RETORNO DE CELDAS	$\overline{}$							SULFATO DE COB/ 400-AG-001	ALTO
A3AG-0500-25DF-001 5	(7) 		Г						i
A3AG-0500-25DF-001 5	7		<u> </u>				>		i f
AGUA POTABLE	CAUDAL DISEÑO = 10 m³∕h				2^{17}			ESTANQUE DE SULFATO (15)	, İ
A3AG-0622-25DF-001 23	· · · · · · · ·		5			PRESION OPERACION= 50 kPac		$\begin{bmatrix} DE COBALTO - 2,5 m^{3} \\ 400-TK-006 \\ + - +$	
			CAUDAL 2			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	CUBIERTA FRP		┐
		DUCHA LAVAOJOS	$\int_{1}^{1} \text{DISENO} = 120 \text{ m}^3/\text{h}$					↓ ↓	
ELECTROLITO RICO		2				\triangleleft		· · · · · · · · · · · · · · · · · · ·	
TREN A		CUBIERTA FRP			{8}				
ELECTROLITO RICO					E E	BOMBAS DE ELECTROLITO POBRE			
TREN B						(2+1)	ESTANQUE DE RECIRCULACIO 400-TK-00	N DE ELECTROLITO – 3.400 m ³ 1 – NOTA 4	400-PP-001 @ 006 (5+1)
DRENAJE	DAL DISEÑO = 10 m ³ /h								
A3AG-0520-25DF-001 7		ESTANQUE DE ELECTROLITO RICO - 1.000 m ⁻³ 400-TK-004	BOMBAS DE Electrolito rig						
AGUA PROCESO	I	NOTA 4	400-PP-011 @ (3+1)	014 INTERCAMBIADOR DE C	ALOR ELECTROLITO			PURGA ORGANICO Y DESCARGA AIRE	E DE LIMPIEZA
A3AG-0622-25DF-001 5 ESTACIONES MANGUERAS	—		. 12	$\frac{400 - HX - 007/00}{(2+0)}$	³ · · · ↓	▲ 		CAUDAL AIRE = $633 \text{ Nm}^3/\text{h}$	
AGUA TRATADA		PRESION DE (PERACION = 200 - 250 kPage 2	NOTA 5,6	POR PROVEEDOR				
RETRALAVADO_FILIROS		. 15						RETROLAVADC)
AIRE INSTRUMENTACION	PATIO ESTANQUES CAUDAL DISEÑO=70 Nm ³ h	2 PRESION DE OPERACION = 50	kPaa , DRENAJE CICLO FILTRADO		400-GB 001/ 002				
A3AG-0628-25DF-001 31 →			(ELECTROLITO)	~ ~ ^ ^ ^ ^ ^	FILTH 40	ROS DE ELECTROLITO 0-FL-010 @ 013 (4+0) / ^	<u>DRENAJE_CICLO_DE_RE</u> 13 (AGUA)	TROLAVADO	
2^{20}	CAUDAL_DISEÑO=_50_Nm²/	<u>′h</u>			PRESION DE OPER PRESION DE DISE	ACION = 300 kPag / 2 EÑO = 527 kPag / 2			
NUMERO DE FLUJO DESCRIPCION	1 2 UNIDAD ELECTROLITO	3450ELECTROLITOELECTROLITO	5 A 5 B 6 ELECTROLITO BY-PASS ELECTROLITO ELE	78910ECTROLITOELECTROLITOELECTROLITOAGUA	11 12 AGUA RETC	13 14 15 DRNO SUSPENSION SOLUCI	1617DNGUARSULFATO DE	181921AGUAREPOSICIONELECTROLITO	22 23 D ACIDO AGUA
	DE SX RICO FRIO CADA TREN	A A ESTANQUE NTERCAMB.	DE INTERC. ELECTROLITO A SECCION RE AUXILIAR A CELDAS DE CELDAS DE	CELDAS CALIENTE FRIO A SX DE FIL	ADO A REFINO CALIENTE A AG RO 9. INTERCAMB	UA DE GUAR DE COB. ENTE	ALTO kg/h COBALTO kg/h 2	TRATADA DE AGUA POBRE A TIBIA TRATADA RECIRCULA- ZA DE ECTODA CION	- PUESTA TRATADA FRIA TRA- EN MARCHA A PREP. CLIAR PR
NOMINAL	m ³ /h 582 <u>.1.164</u>	6 -	- <u>8</u> - 4.180 ·	4.180 1.174 587 35,6	AUXILIAR 35,6 (- 1,43 0,016	5 4,3 5,6 2	A ELECTROL.	- 2,85
FLUJO INSTANTANEC DISEÑO	m 3/h 607 1.213 m 3/h 740 1.400	1.213 1.213 2 500 1.400 1.400 500	500 3,860 4.360 4.360 500 2 4.360 4.360 4.360	4.360 1.226 613 2 285 4.360 1.410 740 350	<u>285</u> – – 350 500 100	- 1,49 0,016 00 3,0 2,5	4,5 5,8 5,6 8,6	5,0 14,1 7,494 5,0 150 7,494	- 30,0 10 40,0
Cu H ₂ SO ₄	g / L 50 50 g / L 157 157	50 50 37 157 157 176,7	37 37 37 176,7 176,7 176,7 176,7	35 35 35 - 180,0 180,0 180,0 -				35 180,0	
CONCENTRACION Fe	g / L < 1,5 < 1,5 g / L < 0,030 < 0,030	< 1,5	< 1,5	< 1,5 < 1,5 < 1,5 - 0,030 < 0,030 < 0,030 < 0,00	 5 < 0,005 < 0,005 < 0	-	 05	- - < 1,5 < 0,005	
Org. DENSIDAD	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	< 0,030 < 0,005 < 0,005 1,2 1,2 1,18	< 0,005 < 0,005 < 0,005 < 1,18 1,18 1,18	0,005 < 0,005 < 0,005 - 1,18 1,18 1,18 1,0	<u> </u>	- – – 98 1.00 1.18		 0.99 1,00 1,18	 1.84 1,00
TEMPERATURA DE DISEÑO	°C 25 25	42 42 48	65 48 50	50 50 33 10	AMB. 90 74	4,5		40 10 50	AMB. 10
	2			2	2				
SIMROLOGIA			\sim \wedge \wedge ¹						
Γ	- FLUJO CONTINUO - FLUJO INTERMITENTE	PUNTO DE I	IUESTREO			O.C.:	Cont	rato N:	_
	- FLUJO EVENTUAL - EQUIPO INCORPORADO ETAPA II	LIMITE DE E	ATERIA						NOMBRE
	- POR OTROS	\sim				ESTE PLANO HA SIDO P	REPARADO POR FLUOR CHILE S.A. Y ES DE P	ROPIEDAD DEL CLIENTE CODELCO CHILE	PROYECTO <u>G. PEZOA</u> REVISO <u>A. V. / I. S</u>
• · · · · ·		• · · · ·		INUTA . ESTE PLANU ES VALIDU SULU CUN		Y DEBERA UTILIZARSE U	NICAMENTE PARA LOS FINES CONTEMPLADOS	EN EL CONTRATO.	JEFE DE DISCIPLINA D. CELMER GERENTE DE ARFA M MORAL FS
	2	REVISION GENERAL	A.G. I.S. D.C.						GERENTE DE INGENIERIA GERENTE DE GERENTE DE
	1 22.FEB.07	MODIFICACIONES INDICADAS	A.G. I.S. D.C. S						JEFE DE MUNIZACI
	E 0 10.0CT.06 E B 01.SEP.06 A 13.JUN.06	PARA APROBACION PARA COORDINACION INTERNA	C.C. I.S. D.C.						GERENTE DE N. MULLER

Universidad del Bío-Bío. Sistema de Bibliotecas - Chile

Tubería HDPE PE 100 norma ISO 4427

Dimensiones tubería HDPE PE 100 (norma ISO 4427)

	DIÁMETRO	DIÁMETRO														
	NOMINAL	NOMINAL	SD	R 41	SDR	27,6	SDR	21	SDF	17	SDR	13,6	SDF	11	SD	۲9
	D	EQUIVALENTE ¹						PRE	SIÓN NO	MINALI	PN ³⁾					
			PI	14	PI	N 6	PN	8	PN	10	PN	12,5	PN	16	PN	20
			Espesor	Peso	Espeso	r Peso	Espesor	Peso	Espesor	Peso	Espesor	Peso	Espesor	Peso	Espesor	Peso
			mínimo	medio					mínimo	medio	mínimo	medio	mínimo	medio	mínimo	medio
	mm	pulgadas	mm	Kg/m	mm	Kg/m	mm	Kg/m	mm	Kg/m	mm	Kg/m	mm	Kg/m	mm	Kg/m
•	16	3/8	_	_	_	_	_	_	_	_	_	_		_	2,3	0,10
	20	1/2	_	_	_	_	_	-	_	_	_	-	_	_	2,3	0,14
	25	3/4	_	_	_	_	_	_	_	_	_	_	2,3	0,17	2,8	0,20
	32	1	_	_	_	_	_	_	2,3 ⁴⁾	0,23	2,4	0,24	3,0	0,28	3,6	0,33
	40	1 ^{1/4}	_	_	_	_	2,3 ⁴⁾	0,29	2,4	0,30	3,0	0,36	3,7	0,44	4,5	0,52
	50	1 ^{1/2}	_	_	2,3 ⁴⁾	0,37	2,4	0,38	3,0	0,46	3,7	0,56	4,6	0,68	5,6	0,81
	63	2	_	-	2,3	0,47	3,0	0,59	3,8	0,73	4,7	0,89	5,8	1,07	7,1	1,28
	75	2 ^{1/2}	_	_	2,8	0,66	3,6	0,84	4,5	1,03	5,6	1,26	6,8	1,51	8,4	1,81
	90	3	2,3	0,68	3,3	0,94	4,3	1,20	5,4	1,49	6,7	1,82	8,2	2,18	10,1	2,61
	110	4	2,7	0,96	4,0	1,38	5,3	1,80	6,6	2,21	8,1	2,68	10,0	3,23	12,3	3,88
	125	5	3,1	1,25	4,6	1,80	6,0	2,32	7,4	2,83	9,2	3,45	11,4	4,20	14,0	5,01
	140	5 1/2	3,5	1,57	5,1	2,24	6,7	2,91	8,3	3,55	10,3	4,33	12,7	5,24	15,7	6,30
	160	6	4,0	2,03	5,8	2,91	7,7	3,81	9,5	4,65	11,8	5,66	14,6	6,86	17,9	8,35
	180	6	4,4	2,52	6,6	3,72	8,6	4,78	10,7	5,89	13,3	7,18	16,4	8,83	20,1	10,57
	200	8	4,9	3,12	7,3	4,57	9,6	5,94	11,9	7,25	14,7	8,84	18,2	10,90	22,4	13,07
	225	8	5,5	3,95	8,2	5,79	10,8	7,53	13,4	9,21	16,6	11,43	20,5	13,80	25,2	16,55
	250	10	6,2	4,93	9,1	7,13	11,9	9,19	14,8	11,30	18,4	14,06	22,7	17,00	27,9	20,36
	280	10	6,9	6,15	10,2	8,96	13,4	11,62	16,6	14,46	20,6	17,65	25,4	21,30	31,3	25,59
	315	12	7,7	7,71	11,4	11,27	15,0	14,61	18,7	18,32	23,2	22,35	28,6	27,00	35,2	32,38
	355	14	8,7	9,83	12,9	14,35	16,9	18,89	21,1	23,30	26,1	28,35	32,2	34,26	39,7	41,16
	400	16	9,8	12,44	14,5	18,15	19,1	24,09	23,7	29,49	29,4	35,96	36,3	43,50	44,7	52,22
	450	18	11,0	15,72	16,3	23,41	21,5	30,46	26,7	37,38	33,1	45,58	40,9	55,13	50,3	66,10
	500	20	12,3	19,52	18,1	28,92	23,9	37,64	29,7	46,19	36,8	56,28	45,4	68,01	55,8	81,49
	560	22	13,7	24,34	20,3	36,29	26,7	47,14	33,2	57,84	41,2	70,59	50,8	85,25	-	-
	630	24	15,4	30,82	22,8	45,87	30,0	59,55	37,4	73,27	46,2	89,08	57,2	108,01	-	-
	710	28	17,4	39,94	25,7	58,30	33,9	75,86	42,1	93,03	52,2	113,41	-	-	-	-
	800	32	19,6	50,78	29,0	74,06	38,1	96,15	47,4	117,96	58,8	143,93	-	-	-	-
	900	36	22,0	64,02	32,6	93,77	42,9	121,73	53,3	149,26	-	-	-	-	-	-
	1000	40	24,5	79,23	36,2	115,68	47,7	150,44	59,3	184,51	-	-	-	-	-	-
	1200	48	29,4	114,12	43,4	166,32	57,2	216,43	-	-	-	-	-	-	-	-
	1400	54	34,3	155,30	50,6	226,23	-	-	-	-	-	-	-	-	-	-
	1600	64	39.2	202.81	57.9	295.58										

1) Diámetro nominal equivalente en pulgadas, como referencia con la norma ASME B36.10.

2) La relación dimensional estándar SDR corresponde al cuociente entre el diámetro externo y el espesor de pared de la tubería. Es adimensional.
3) La presión nominal PN corresponde a la máxima presión de operación admisible de la tubería a 20°C, en bar.

4) Valores no cubiertos por la norma ISO 4427. En base a nuestra experiencia, recomendamos un espesor mínimo de 2,3 mm para estas medidas.

Esta tabla se basa en las normas ISO 4427 e ISO 4065.

Los pesos están calculados en base a valores medios de diámetro y espesor, según tolerancias especificadas en la norma ISO 11922-1.

Tubería suministrada en rollos o tiras.

Friction of Water Head Losses Through Valves and Fittings

Head losses (h_f) through valves, fittings, sudden contractions and enlargements, entrance and exit losss can be expressed in terms of the velocity head $(V^2/2g)$ by using the applicable resistance coefficient (K) in the equations:

$$h_f = K \frac{V^2}{2g} = K(0.0155)V^2 = K \frac{(0.00259)gpm^2}{d^4}$$

Select applicable (K) from tables on pages 3-111 to 3-117; select (V) for average velocity in pipe of diameter required to accommodate fitting; see examples on page 3-119.

A second method of expressing head losses (h_f) through values and fittings etc. is in terms of the equivalent length of straight pipe that will produce the same loss as calculated by the Darcy-Weisbach equation for straight pipe. (See table on page 3-120).

The applicable equations are:

$$h_f = \left(\, f \, \frac{L}{D} \right) \frac{V^2}{2g} \ ; \quad K = f \, \frac{L}{D} \ ; \quad L = \frac{KD}{f} \label{eq:hf}$$

where

- d = pipe diameter inches
- D = pipe diameter in feet
- f = friction factor (from chart, Page 3-11) for zone of complete turbulence.
- $g = gravitational constant 32.174 \text{ ft/sec}^2$
- $\bar{\mathbf{h}}_{f} = \bar{\mathbf{h}} \mathbf{e} \mathbf{a} \mathbf{d}$ loss in feet of liquid
- K = resistance coefficient (from tables on pages 3-111 to 3-120) is based on test data, or extrapolated from test data; and depends on design, size and type of fitting.
- L = friction loss in pipe fittings in terms of equivalent length in feet of straight pipe (See table page 3-120).
- V = average velocity in pipe of diameter required to accommodate fitting ft/sec.

From the above one can solve for (L) and L/D ratio using the value of K from the tables and selecting f for the zone of complete turbulence.

A third method of expressing head losses, particularly for control valves, is in terms of a flow coefficient C_v. This is defined as the flow of liquid at 60°F in gallons per minute at a pressure drop of one pound per square inch across the valve. The relationship of C_v and K is shown by the following formulas.

$$C_v = \frac{29.9 \times d^2}{\sqrt{K}} \text{ and } K = \frac{894 \times d^4}{(C_v)^2}$$

The tables on pages 3-111 to 3-119 list K values for schedule 40 pipe in sizes up to and including 24" and are based on flows for complete turbulence.

Since the K values between pipe sizes are close, it is reasonable to interpolate between sizes if they do not correspond to schedule 40 diameters.

For K values for pipes larger than 24" it is suggested that the 24" value be used.

The above text and tables on pages 3-111 to 3-120 are based on material in Crane Co. Technical Paper No. 410^{*} . Reference to this paper is suggested for more complete review of this subject.

* It should be noted that there is considerable variation in published values of resistance coefficient K for different valves and fittings.

3-110

		R	Fric esistance c	ction Loss i	n Pipe Fitti use in formul	ings a $h_f = K \frac{V^2}{2g}$	
	18-24		0.10	4.1	0.66	1.80	0.04
	12-16		0.10	4.4	0.72	1.95	0.04
	8-10		0.11	4.8	0.77	2.10	0.04
	9		0.12	5.1	0.83	2.25	0.05
	4		0.14	5.8	0.94	2.55	0.05
pipe size	21/2-3	alue	0.14	6.1	66:0	2.70	0.05
Nominal	2	×	0.15	6.5 2	1.05	2.85	0.06
	11/2		0.15	7.1	1.16	3.15	0.06
-	11/4		0.18	7.5	1.21	3.30	0.07
	١		0.18	7.8	1.27	3.45	0.07
	₽/£		0.20	8 5	1.38	3.75	0.08
	2/1		0.22	9.2	1.48	4.05	0.08
_		Ŋ	ω	340	55	150	n
		Fitting	Gate Valves	Globe Valves	Angle Valves	Angle Valves	Ball Valves

FRICTION-WATER-PIPE FITTINGS

	Friction of Water (<i>Continued</i>) Friction Losses in Pipe Fittings														
	Resistance coefficient K (use in formula $h_f = K \frac{V^2}{2g}$)														
	18-24		0.30	0.22	0.36	1.08	0.36	0.19	0.19						
	12-16		0.35	0.23	0.39	1.17	0.39	0.21	0.21						
	8-10		0.63	0.25	0.42	1.26	0.42	0.22	0.22						
	9		0.68	0.27	0.45	1.35	0.45	0.24	0.24						
	4		0.77	0.31	0.51	1.53	0.51	0.27	0.27						
pipe size	21/2-3	alue	0.81	0.32	0.54	1.62	0.54	0.29	0.29						
Nominal	2	×	0.86	0.34	0.57	1.71	0.57	0.30	0.30						
	11/2			0.38	0.63	1.89	0.63	0.34	0.34						
	11/4			0.40	0.66	1.98	0.66	0.35	0.35						
	+			0.41	0.69	2.07	69:0	0.37	0.37						
	3/4			0.45	0.75	2.25	0.75	0.40	0.40						
	1/2			0.49	0.81	2.43	0.81	0.43	0.43						
		Ŋ		8	ę	8	90	16	9						
				a v	우 		.06	45°	long radius 90°						
		Fitting		Plug Valve straightw	Plug Valve 3-way thr	Plug Valve branch-fl	Standard elbow								

Universidad del Bío-Bío. Sistema de Bibliotecas - Chile

Note: Fittings are standard with full openings.

	Friction of Water (Continued) Friction Losses in Pipe Fittings																							
			Resist	rı an	riction ce coeffi	LO)S: ent	se: K	s I u	n se	PI in	pe foi	e F rmi	iti ula	tin Eh	gs . =	ί Κ	V ²	.)					
10	10-24	0.60		0.24	0.72	0.24	0.14	0.14	0.17	0.20	0.29	0.36	0.41	0.46	0.50	0.55	09.0	2g 20:0		0.10	0.18	0:30	0.48	0.72
10 10	01-71	0.65		0.26	0.78	0.26	0.16	0.16	0.18	0.22	0.31	0.39	0.44	0.49	0.55	09.0	0.65	0.03	0.05	0.10	0.20	0.33	0.52	0.78
0,0	0-10	0.70		0.28	0.84	0.28	0.17	0.17	0.20	0.24	0.34	0.42	0.48	0.53	0.59	0.64	0.70	0.03	0.06	0.11	0.21	0.35	0.56	0.84
ų	•	0.75		0.30	0.90	0:30	0.18	0.18	0.21	0.26	0.36	0.45	0.51	0.57	0.63	0.69	0.75	0.03	0.06	0.12	0.23	0.38	0.60	0:00
Ŀ	+	0.85		0.34	1.02	0.34	0.20	0.20	0.24	0.29	0.41	0.51	0.58	0.65	0.71	0.78	0.85	0.03	0.07	0.14	0.26	0.43	0.68	1.02
C 710	value.	06.0		0.36	1.08	0.36	0.22	0.22	0.25	0.31	0.43	0.54	0.61	0.68	0.76	0.83	06.0	0.04	0.07	0.14	0.27	0.45	0.72	1.08
	- ¥	0.95		0.38	1.14	0.38	0.23	0.23	0.27	0.32	0.46	0.57	0.65	0.72	0.80	0.87	0.95	0.04	0.08	0.15	0.29	0.48	0.76	1.14
414	1/2	1.05		0.42	1.26	0.42	0.25	0.25	0.29	0.36	0.50	0.63	0.71	0.80	0.88	0.97	1.05	0.04	0.08	0.17	0.32	0.53	0.84	1.26
112	4	1.10		0.44	1.32	0.44	0.26	0.26	0.31	0.37	0.53	0.66	0.75	0.84	0.92	1.01	1.10	0.04	60.0	0.18	0.33	0.55	0.88	1.32
ŀ	-	1.15		0.46	1.38	0.46	0.28	0.28	0.32	0.39	0.55	0.69	0.78	0.87	0.97	1.06	1.15	0.05	60.0	0.18	0.35	0.58	0.92	1.38
37.	ş	1.25		0.50	1.50	0.50	0.30	0.30	0.35	0.43	0.60	0.75	0.85	0.95	1.05	1.15	1.25	0.05	0.10	0.20	0.38	0.63	1.00	1.50
1/2	2/	1.35		0.54	1.62	0.54	0.32	0.32	0.38	0.46	0.65	0.81	0.92	1.03	1.13	1.24	1.35	0.05	0.11	0.22	0.41	0.68	1.09	1.62
	9	20	····-	20	09	20	12	12	14	17	24	8	34	38	42	46	50	2	4	8	15	25	40	60
	Type of hend			thru flo	thru branch	r/d = 1	r/d = 2	r/d = 3	r/d = 4	r/d = 6	r/d = 8	r/d = 10	r/d = 12	r/d = 14	r/d = 16	r/d = 18	r/d = 20	$\alpha = 0^{\circ}$	$\alpha = 15^{\circ}$	$\alpha = 30^{\circ}$	$\alpha = 45^{\circ}$	$\alpha = 60^{\circ}$	$\alpha = 75^{\circ}$	α = 90°
	Fitting	Close Return Bend	•	Standard Tee	L	90° Bends. Pipe bends, flanged	elbows, butt welded elbows	_	ł			· · ·			_			Mitre Bends	/p		× ×			

3-112

3

	Friction of Water (<i>Continued</i>) Friction Losses in Pipe Fittings													
			Resistance	coefficient K	(use in form	ula $h_f = K \frac{V^2}{2g}$)							
	18-24		4 0	2.4	4.2	9.0 9.0	8							
	12-16		5.2	2.6	4.6	6. E	.72							
	8-10		5.6	2.8	6. 9	4.2	22							
	9		9	3.0	5.3	4. C	8 3							
size	4		6.8	3.4	6.0	5.1								
nal pipe	21/2-3	< value*	7.2	3.6	6.3	5.4	1.0							
Nomi	5		7.5	3.8	6.7	5.7	12							
	1 1/2		8 4	4.2	7.4	6.3	1.2							
	11/4		8.8	4.4	7.7	6.6	1 2							
	-		6 2.	4.6	8 1	6.9	1.3							
	3/4		10	Ś	8.8	7.5	4.							
	1/2		10.8	5.4	9.5	8.1	1.5							
city for		water ft/sec	6.96	9.49	7.59	7.59	17.7							
Minimum veloc	Inii disc I	ft/sect	55 🗸	75 VV	60 🗸	60 🗸	140 🗸							
		L/D	400	200	350	300	55							
	Fitting	stop-cneck valves												

Gatulated from data in Crane Co. Technical Paper No. 410. • These K values for flow giving full disc lift. K values are higher for low flows giving partial disc † In these formulax, ..' is specific volume– ft.'iD.

Note: Fittings are standard with full port openings.

1

١

	Friction of Water (Continued) Friction Loss in Pipe Fittings													
			Re	esistar	nce coefficien	nt K (us	e ir	n formula h	$f = \mathbf{K} \frac{\mathbf{V}^2}{\mathbf{2q}}$					
	18-24		1.2	9	7.2	90	24	72	0.0	<u>8</u> .				
	12-16		1.3	.65	7.8	.72	39	1 2	5.5	1.0				
	8-10		1.4	.70	8 4	77.	.56	7.1	o. S	Ę				
	9		1.5	.75	0.6	.83	.60	.	6.3	Ξ				
size	4		1.7	0.0	10.2	.94	.68	2.0	7.1	1.3				
inal pipe	21/2-3	K value⁺	1.8	0.9	10.8	1.0	.72	2.2	7.6	1.4				
Nom	2		1 9.1	1.0	11.4	1	.76	2.3	8.0	1. 4.				
	11/2		2.1	1.1	12.6	1.2			80 80	1.7				
	11/4		2.2	F	13.2	1.2			9.3	1.7				
	-		2.3	1.2	13.8	1.3			9.7	1.7				
	3/4		2.5	1.3	δ	1.4			10.5	6. -				
	1/2		2.7	1.4	16.2	1.5			11.3	2.0				
city for	T mater	ft/sec	4.43	6.08	5.06	17.7	10.13	3.80	1.90	4,43				
Minimum velo	deneral	ft/sec†	35 🗸	48 √	40 <i>v</i>	140 √	80 VV	30 VV	15 VV	35 🗸				
		L/D	100	50	600	55	5°	15°	420	75				
	-	/ Fitting	Swing check		Lift check value	K	Tilting disc check valve		Foot valve with strainer poppet disc	Foot valve muth strainer hinged disc				

Catculated from data in Crane Co. Technical Paper No. 410. • These K values for flow giving full disc fift. K values are higher for low flows giving partial disc lift. † in these formulas, V, is specific volume-ft+flo

3 - 115

3

Note: Fittings are standard with full port openings.

e L

INGERSOLL-RAND CAMERON HYDRAULIC DATA

Friction of Water (Continued) Friction Loss in Pipe Fittings Resistance coefficient (use in formula $h_f = K \frac{V^2}{2g}$)											
·		All pipe sizes									
Fitting	Description	K value									
	projecting sharp edged rounded	1.0									
Pipe entrance	inward projecting	0.78									
Pipe entrance flush	sharp edged	0.5									
∎∠r	r/d = 0.02	0.28									
	r/d = 0.04	0.24									
d	r/d = 0.06	0.15									
	r/d = 0.10	0.09									
-	r/d = 0.15 & up	0.04									

From Crane Co. Technical Paper 410.

Emperation in the second s

Friction Loss Due to Change in Pipe Size—Feet of Liquid Loss of head in ft of liquid Based on velocity in smaller pipe

ł

	Friction of Water (Continued) 비 (응																			
		Velocity	of d, fps	2	3	4	5	9	7	8	6	10	12	15	20	25	30	40	K value	
	~		0.1	.03	.07	.12	.19	.28	.38	.50	.63	11.	1.12	1.75	3.10	4.86	6:99	12.4	0.50	
	₽ ₽	-	0.2	.03	.07	.12	.19	.27	.37	.48	.60	.75	1.07	1.68	2.98	4.66	6.71	11.9	0.48	(
	│┌─┘↑└─ │┌───]	0.3	.03	90	H.	.18	.26	.35	.46	.56	۲۲.	1.03	1.61	2.86	4.47	6.43	11.4	0.46	$\left(1-\frac{d_{1}^{2}}{d_{2}^{2}}\right)$
]	0.4	.03	90.	.10	.16	.23	.32	.42	.53	.65	.94	1.47	2.61	4.08	5.87	10.4	0.42	IS K = 0.5
		d,/d,	0.5	02	.05	60'	.15	.21	.29	.38	48	59	.85	1.33	2.36	3.69	5.31	9.45	0.38	ntraction
	su		0.6	8	94	.08	.12	.18	.24	.32	.40	.50	.72	1.12	1.99	3.11	4.48	7.96	0.32	idden co
	den ctio		0.7	23	8	90	.10	.14	19	.25	.31	38	.56	.87	1.55	2.43	3.50	6.22	0.25	For su
	Sud		0.8	<u>10</u>	.03	<u>6</u>	.07	10	.14	18	.23	.28	40	.63	1.12	1.75	2.52	4.48	0.18	
	ပိ		6.0	10	<u>10</u>	.02	<u>6</u>	.05	-07	60	.12	.15	.21	.33	.59	.92	1.32	2.36	095	2
			0.1	90.	14	.24	8 6.	.55	.75	-97	1.23	1.52	2.19	3.43	60.9	9.52	15.7	24.4	0.98	$=\left(1-\frac{d_1}{d_2}\right)$
			0.2	90.	.13	23	36	.51	.70	.92	1.16	1.43	2.06	3.22	5.72	8.94	12.9	22.9	0.92	ments K
	+ ⁵ →		0.3	.05	.12	.21	32	.46	19	.83	1.04	1.29	1.86	2.90	5.16	8.06	11.6	20.6	0.83	n enlarge
•		5	0.4	04	.10	.17	.27	.39	.53	.70	88.	1.09	1.57	2.45	4.35	6.80	9.79	17.4	0.70	or sudde
	$ $ \square	d,/d,	0.5	.03	90 [.]	.14	22	.31	43	.56	.70	.87	1.25	1.96	3.48	5.44	7.83	13.9	0.56	ι ú.
			9.0	.03	90	10	.16	.23	.31	41	.52	.64	92	1.43	2.55	3.98	5.73	10.2	0.41	 2. _5
	n ients		0.7	62	04	90	10	.15	.50	.26	.33	.40	.58	16	1.62	2.53	3.64	6.46	0.26	н 2 2
	ndde gem		0.8	<u>10</u>	.02	03	.05	.07	.10	.13	.16	.20	.29	.45	.80	1.26	1.82	3.23	0.13	formula
	Sı Sı		0.9	00 [.]	10	01	01	.02	.03	.04	.05	90.	.08	.13	.22	.35	.50	<u> 06</u>	.036	ted from
		/elocity	of d. fps	2	е	4	5	9	7	8	6	10	12	15	20	25	30	40	K value	Calcula

FRICTION-WATER-PIPE FITTINGS

3

Example: Assume $d_1 = 6^{\circ}$; $d_2 = 10^{\circ}$; velocity $d_1 = 10$ fps. $\frac{d_1}{d_2} = 0.60$ From chart: for sudden enlargements: $h_1 = 0.64$ feet from sudden contractions: $h_2 = 0.50$ feet

3-117

Friction of Water (Continued) Formulas for Calculating "K" Factors for Sudden and Gradual Contractions and Enlargements

(K values are for velocity in the small pipe)

Gradual Contraction (Based on velocity in small pipe)

1)
$$\theta < 45^{\circ}$$
 $K = 0.8 \sin \frac{\theta}{2} \left(1 - \frac{d_1^2}{d_2^2} \right)$

2)
$$\theta > 45^{\circ} < 180^{\circ}$$
 $K = 0.5 \left(1 - \frac{d_{1}^{2}}{d_{2}^{2}} \right) \sqrt{\sin \frac{\theta}{2}}$

Gradual Enlargement (Based on velocity in small pipe)

3)
$$\theta < 45^{\circ}$$
 $K = 2.6 \sin \frac{\theta}{2} \left(1 - \frac{d_1^2}{d_2^2} \right)^2$

4)
$$\theta > 45^{\circ} < 180^{\circ}$$
 K = $\left(1 - \frac{d_1^2}{d_2^2}\right)^2$

Substitute above values of K in formula $h_f = K \frac{V^2}{2g}$ If desired, areas can be used instead of diameters in which case substitute

$$\frac{a_1}{a_2} \text{ for } \frac{d_1^2}{d_2^2} \qquad \text{ and } \qquad \left(\begin{array}{c} a_1 \\ a_2 \end{array} \right)^2 \text{ for } \left(\begin{array}{c} d_1 \\ d_2 \end{array} \right)$$

FRICTION-WATER-PIPE FITTINGS

Resistance coefficient K (use in formula
$$h_f = K \frac{V^2}{2a}$$

The K factors in the table below are given for use in making estimates of friction loss for fittings not covered in the preceding pages.

K value			
 to 10			
7.5			
to 1.6 times value or smooth bend			

Example: Determine L (Friction loss in pipe fittings in terms of equivalent length in feet of straight pipe). Assume a 6" angle valve—Schedule 40 pipe size. Select K from table on page 3-111; select D and f for schedule 40 pipe from table below where D is pipe diameter in feet.

Pipe size inches sch. 40	D Feet	f	Pipe size inches sch. 40	D Feet	f	Pipe size inches sch. 40	D Feet	f	Pipe size inches	D Feet	f
1/2	0.0518	0.027	21/2	0.2058	0.018	10	0.835	0.014	24	1.8857	0.012
			3	0.2557	0.018	12	0.9948	0.013	30*	2.3333	0.011
3⁄4	0.0687	0.025	4	0.3355	0.017	14	1.0937	0.013	36*	2.8333	0.011
1	0.0874	0.023	5	0.4206	0.016	16	1.250	0.013	42*	3.3333	0.010
11⁄4	0.115	0.022	6	0.5054	0.015	18	1.4063	0.012	48*	3.8333	0.010
11/2	0.1342	0.021	8	0.6651	0.014	20	1.5678	0.012			
2	0.1723	0.019	_								

Based on 1" thick wall.

Solution: For angle valve in 6" pipe

K from page 3-111 = 2.25; D = 0.5054; f = 0.015

$$L = \frac{KD}{f} = \frac{2.25 \times 0.5054}{0.015} = 75.8 \text{ ft.} - \text{equivalent length of straight}$$

pipe. (this is shown in the table on page 3-120)

For an example not covered in the table on page 3-120, take a 4'' plug valve with flow through branch (From page 3-112; K = 1.53)

$$L = \frac{KD}{f} = \frac{1.53 \times 0.3355}{0.017}$$

= 30.2 ft.—equivalent length of straight pipe.

FRICTION-WATER-PIPE FITTINGS

From Crane Co. Technical Paper No. 409. Data based on the above chart are satisfactory for most applications; for more detailed data and information refer to pages 3-110 to page 3-120 which are based on Crane Co. Technical Paper No. 410.

Friction Losses—Valves and Fittings—Viscous Liquids

Very little reliable test data on losses through Valves and Fittings for viscous liquids is available. In the absence of meaningful data some engineers assume the flow is turbulent and use the equivalent length method; i.e. where friction losses through valves and fittings are expressed in terms of equivalent length of straight pipe (see pages 3-120 and 3-121). Calculations made on the basis of turbulent flow will give safe results since friction losses for turbulent flow are higher than for laminar (viscous) flow.

Miscellaneous Formulas

Discharge of fluid through valves and fittings

gal per min = 19.65 d²
$$\sqrt{\frac{h_L}{K}}$$

This equation may be used for determining the flow in a system if K is the sum of all the resistances in the system including entrance and exit losses.

Where: d = pipe diameter—inches $h_L = friction loss in feet of liquid$ K = sum of all resistance in the systemincluding entrance and exit losses.

Velocity (fps) = $\frac{0.4085 \text{ gpm}}{d^2(\text{in.})}$