EVALUACIÓN DE LA PUESTA EN MARCHA DE UN FLOTADOR PASIVO CON SISTEMA DE PANTALLAS

FABIAN ALBERTO FUENTES FLORES

CONCEPCIÓN, ABRIL 2013
NOMENCLATURA

<table>
<thead>
<tr>
<th>Abreviatura</th>
<th>Definición</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cm</td>
<td>Carga Másica</td>
</tr>
<tr>
<td>DBO</td>
<td>Demanda Bioquímica de Oxígeno</td>
</tr>
<tr>
<td>DQO</td>
<td>Demanda Química de Oxígeno</td>
</tr>
<tr>
<td>IVL</td>
<td>Índice Volumétrico de Lodos</td>
</tr>
<tr>
<td>OD</td>
<td>Oxígeno Disuelto</td>
</tr>
<tr>
<td>SSe</td>
<td>Sólidos Suspendidos en el Efluente</td>
</tr>
<tr>
<td>SST</td>
<td>Sólidos Suspendidos Totales</td>
</tr>
<tr>
<td>SSV</td>
<td>Sólidos Suspendidos Volátiles</td>
</tr>
</tbody>
</table>
ÍNDICE GENERAL

NOMENCLATURA.. ii
ÍNDICE GENERAL .. iii
ÍNDICE DE FIGURAS ... vi
ÍNDICE DE TABLAS ... vii
RESUMEN .. 1
ABSTRACT .. 2

1 INTRODUCCIÓN .. 3
 1.1 Antecedentes Generales ... 3
 1.2 Identificación y Justificación del Problema ... 3
 1.3 Alcances del Estudio ... 4
 1.4 Objetivos del Estudio .. 4
 1.4.1 Objetivo General ... 4
 1.4.2 Objetivos Específicos .. 4

2 REVISIÓN BIBLIOGRÁFICA ... 5
 2.1 Aguas Residuales ... 5
 2.1.1 Origen ... 5
 2.1.2 Características ... 6
 2.1.3 Sustancias Contaminantes .. 7
 2.1.4 Biodegradabilidad ... 8
 2.2 Tratamiento de Aguas Residuales .. 9
 2.2.1 Pretratamiento .. 9
 2.2.2 Tratamiento Primario .. 9
 2.2.3 Tratamiento Secundario ... 9
2.2.4 Tratamiento Terciario .. 10
2.3 Lodos Activos .. 10
2.4 Sistemas de Pretratamiento ... 11
 2.4.1 Desbaste ... 11
 2.4.2 Dilaceración ... 12
 2.4.3 Desarenado .. 12
 2.4.4 Desaceitado y Desengrasado .. 13
 2.4.5 Homogeneización .. 13
 2.4.6 Mesclado .. 14
2.5 Parámetros de Diseño de Equipos de Tratamiento ... 14
 2.5.1 Carga Másica ... 14
 2.5.2 Edad Celular .. 15
 2.5.3 Tiempo de Residencia Hidráulica .. 16
 2.5.4 Tasa Hidráulica .. 16
2.6 Ensayos Físicos y Químicos que caracterizan al Agua Residual .. 17
 2.6.1 SST .. 17
 2.6.2 SSV ... 17
 2.6.3 IVL .. 17
 2.6.4 OD ... 18
 2.6.5 Ph ... 18
 2.6.6 Temperatura ... 18
 2.6.7 DBO ... 18
 2.6.8 DBO₅ .. 18
 2.6.9 DQO .. 19
3 METODOLOGÍA DEL ESTUDIO .. 20
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Estudios de Antecedentes</td>
<td>21</td>
</tr>
<tr>
<td>3.2 Identificación de los Parámetros de Dimensionamiento</td>
<td>21</td>
</tr>
<tr>
<td>3.3 Selección de Parámetros a Monitorear</td>
<td>21</td>
</tr>
<tr>
<td>3.3.1 Ensayos a realizar en el campo</td>
<td>21</td>
</tr>
<tr>
<td>3.3.2 Ensayos de laboratorio</td>
<td>22</td>
</tr>
<tr>
<td>3.4 Reconocimiento de la Nch of. para la realización del ensayo</td>
<td>22</td>
</tr>
<tr>
<td>3.5 Monitorear la Planta</td>
<td>22</td>
</tr>
<tr>
<td>3.6 Registro de antecedentes recolipalos</td>
<td>22</td>
</tr>
<tr>
<td>3.7 Análisis de datos</td>
<td>22</td>
</tr>
<tr>
<td>3.8 Discusión y conclusiones</td>
<td>23</td>
</tr>
<tr>
<td>3.9 Recomendaciones para óptimizar el proceso</td>
<td>23</td>
</tr>
<tr>
<td>4 RESULTADOS</td>
<td>24</td>
</tr>
<tr>
<td>4.1 Monitoreo de los Parámetros Operacionales</td>
<td>24</td>
</tr>
<tr>
<td>4.1.1 Flotador Pasivo con Sistema de Pantallas</td>
<td>24</td>
</tr>
<tr>
<td>4.1.2 Estanque Biológico</td>
<td>27</td>
</tr>
<tr>
<td>4.1.3 Efluente Final</td>
<td>28</td>
</tr>
<tr>
<td>4.2 Monitoreo de las Purgas en el Flotador</td>
<td>30</td>
</tr>
<tr>
<td>4.2.1 Relación Altura - SST</td>
<td>30</td>
</tr>
<tr>
<td>4.2.2 Tiempo de Purga</td>
<td>32</td>
</tr>
<tr>
<td>4.3 Residuos Generados</td>
<td>33</td>
</tr>
<tr>
<td>5 CONCLUSIONES Y RECOMENDACIONES</td>
<td>36</td>
</tr>
<tr>
<td>6 BIBLIOGRAFÍA</td>
<td>38</td>
</tr>
<tr>
<td>ANEXOS</td>
<td>39</td>
</tr>
</tbody>
</table>
ÍNDICE DE FIGURAS

Figura 1: Sistema de Lodos Activos.. 11
Figura 2: Relación entre los SST de entrada y salida del Flotador... 25
Figura 3: Relación entre los SSV de entrada y salida del Flotador ... 26
Figura 4: Relación entre la DQO de entrada y salida del Flotador ... 26
Figura 5: Valores de SST y SSV en el Estanque Biológico... 27
Figura 6: Valores IVL en el Estanque Biológico. .. 28
Figura 7: Valores SS en el Efluente.. 29
Figura 8: Valores Ph en el Efluente.. 29
Figura 9: Tendencia Altura – SST en el Flotador... 31
Figura 10: Relación Altura – SST en el fondo del Flotador... 31
ÍNDICE DE TABLAS

Tabla 1: Descripción de Fuentes Fundamentales ... 5
Tabla 2: Características y Procedencias de las Aguas Residuales .. 6
Tabla 3: Clasificación del IVL. .. 18
Tabla 4: Puntos Muestreados ... 24
Tabla 5: Resultados Mensuales del Flotador .. 25
Tabla 6: Resultados Mensuales del Estanque Biológico ... 27
Tabla 7: Resultados Mensuales del Efluente Final .. 28
Tabla 8: Resultados Purgas cada 2 min en el Flotador durante Agosto 32
Tabla 9: Resultados Purgas cada 2 min en el Flotador durante Septiembre 33
Tabla 10: Datos Históricos de Disposición de Residuos .. 34
Tabla 11: Residuos Generados Abril – Septiembre 2012 ... 34
EVALUACIÓN DE LA PUESTA EN MARCHA DE UN FLOTADOR PASIVO CON SISTEMA DE PANTALLAS

Autor: Fabian Alberto Fuentes Flores.
Departamento Ingeniería Civil y Ambiental, Universidad del Bío-Bío.
fafuente@alumnos.ubiobio.cl

Profesor Patrocinante: Pedro Cisterna Osorio.
Departamento Ingeniería Civil y Ambiental, Universidad del Bío-Bío.
pcesterna@ubiobio.cl

RESUMEN
La empresa Ewos Chile Alimentos Ltda., ubicada en Parque Industrial Escuadrón Km.20 camino Concepción – Coronel, adoptó el sistema de Fangos Activos para depurar las aguas residuales provenientes de la fabricación de alimentos para salmón (Pellet). Con la finalidad de mejorar al actual sistema se instaló, como pretratamiento, un flotador pasivo con sistema de pantalla que es capaz de retener grasas, aceites y sólidos. Esta nueva implementación tiene como objetivo mejorar el tratamiento de las aguas de origen industrial antes de ser evacuadas al mar mediante un emisario submarino. Para confirmar el real aporte del Flotador, se llevó a cabo un registro y estudio de los contaminantes.
La metodología planteada consistió en tomar muestras, 3 veces por semana, en puntos específicos de la planta, además se discriminó entre los parámetros más representativos para luego compararlos con las mediciones anteriores. Adicionalmente, el registro de los residuos generados por el flotador, permitió cuantificar lo que la empresa pudo ahorrar en sistemas de limpieza y traslado de residuos.
Como resultado del seguimiento al proceso, se puede afirmar que el flotador influyó de manera positiva en todos los aspectos considerados. También se propone un cronograma de purgas que ayude a los operarios a evitar imprevistos en la planta.

Palabras Claves: Fangos Activos, Flotador Pasivo, Contaminantes.
EVALUATION IN THE IMPLEMENTATION OF A SCREEN PASSIVE FLOAT SYSTEM

Autor: Fabian Alberto Fuentes Flores.
Departamento Ingeniería Civil y Ambiental, Universidad del Bío-Bío.
fafuente@alumnos.ubiobio.cl

Profesor Patrocinante: Pedro Cisterna Osorio.
Departamento Ingeniería Civil y Ambiental, Universidad del Bío-Bío.
pcisterna@ubiobio.cl

ABSTRACT
Ewos Chile Alimentos Ltda. Company, which is located at Parque Industrial Escuadrón Km. 20 Concepción-Coronel road, it acquired the Activated Sludge system to debug waterwaste portions that come from salmon food manufacturing (Pellets). A screen passive float system was installed as pretreatment in order to improve the current system, which is capable to retain fats and oils.

This new implementation intends to improve the treatment of industrial water before of being evacuated to the sea through a marine outfall. So as to verify the real contribution of the Float, it took into account a register and a study of the contaminants.

The methodology established was to take samples, 3 times a week max, in specific locations inside the plant. Besides, the most common parameters were discriminated with the purpose of comparing them with previous measurements. Additionally, the register of the waste produced by the float allowed to quantify the amount of money that the company could save in cleaning systems and waste shipments.

As a result of monitoring the process, it can be said that the float had a positive influence on all of the aspects that were considered. It also proposes a purges schedule to help operators to avoid unexpected issues inside the plant.

Key words: Activated Sludge, Passive Float, Contaminants.
1 INTRODUCCIÓN

1.1 Antecedentes Generales
Una de las consecuencias de los procesos industriales son los grandes volúmenes de agua generados, los cuales posteriormente son vertidos en distintos medios receptores. Para generar el mínimo impacto se pueden llevar a cabo distintos tipos de tratamientos. La empresa Ewos Chile Alimentos Ltda. ha decidido utilizar el tratamiento de lodos activos, los que mediante la degradación de la materia orgánica, son capaces de tratar las aguas residuales en periodos de tiempo acotados y espacios reducidos.

Un pretratamiento es todo aquello que engloba a los procesos que se sitúan a la entrada de la planta depuradora para eliminar residuos sólidos, arenas y grasas, que de no ser separados dañarían mecánicamente los equipos de las siguientes fases de tratamiento y sedimentarían en las tuberías y conductos de la instalación, obstruyéndolos o bien producirían pérdida de eficacia. En este caso se cuenta con un Flotador Pasivo, que es un dispositivo que separar las grasas y aceites arrastrados por el agua residual.

1.2 Identificación y Justificación del Problema
Las aguas residuales industriales tienen diversas características, dependiendo de la clase de industria e incluso varían dentro de una misma industria, lo que las diferencia de las aguas domésticas que se pueden caracterizar dependiendo del nivel de vida, de los hábitos de consumo, del clima, etc. Esta diferencia implica pensar en distintas soluciones para tratar las aguas residuales. Es por ello que toman importancia los sistemas de pretratamiento, que separan y eliminan partículas de gran tamaño y finos orgánicos. Sin embargo, el pretratamiento no constituye un tratamiento en sí, aun cuando elimina cierta contaminación, ya que su aplicación está orientada fundamentalmente a la protección de las operaciones y procesos subsiguientes (Cisterna, 2003).

Debido a las características de las aguas residuales de la empresa Ewos Chile Alimentos Ltda. lo más conveniente como pretratamiento es un desengrasador (separar sólido-líquido). Además, como en el influente se puede apreciar un contenido de materia grasa separable, se justifica el tratamiento físico que evitará numerosos problemas en el proceso de depuración, tales como:
- Adhesión a aparatos, conductos o depósitos, dificultando la depuración.
- Obstrucción de las rejillas finas.
- Formación de una capa, en la superficie de los decantadores, que dificulta la sedimentación al atraer hacia arriba pequeñas partículas de materia orgánica.
- Dificultad en la correcta aireación en la depuración de los fangos activos.

1.3 Alcances del Estudio

El estudio consiste en evaluar el comportamiento del Flotador Pasivo y cuantificar el aporte al sistema existente de depuración de aguas residuales. Para conseguir dicho objetivo, se realizó una extracción de muestras durante el proceso, con el fin de averiguar si se reducen los parámetros operacionales. La toma de éstas no sólo se concentró en el Flotador, sino también en el estanque Biológico y en el Efluente final, así mismo, las mediciones fueron tomadas de forma periódica tres veces por semana: En el caso del Flotador, antes y después; y en los otros procesos fue durante.

El laboratorio de la Empresa está equipado con los instrumentos necesarios para realizar los ensayos correspondientes. Además, está el registro de meses anteriores, que permite comparar los resultados antes y después del la instalación del Flotador, tanto de los parámetros como de los residuos generados.

1.4 Objetivos del Estudio

1.4.1 Objetivo General

Evaluar el comportamiento de un Flotador Pasivo con Sistema de Pantallas frente a un influente de origen industrial.

1.4.2 Objetivos Específicos

- Verificar la capacidad del flotador de reducir los contaminantes.
- Comparar la cantidad de residuos (grasas y aceites) generados por el sistema anterior y el actual.
- Establecer un cronograma de Purga para que los operarios puedan evitar problemas en la planta.
2 REVISIÓN BIBLIOGRÁFICA

2.1 Aguas Residuales

2.1.1 Origen
Las aguas residuales son residuos líquidos provenientes de las actividades humanas. “Las cuatro fuentes fundamentales de aguas residuales son: (1) aguas domésticas o urbanas, (2) aguas residuales industriales, (3) escorrentías de usos agrícolas, (4) pluviales”. (Ramalho, 1993).

<table>
<thead>
<tr>
<th>FUENTES DE AGUAS RESIDUALES</th>
<th>DESCRIPCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Domésticas o Urbanas</td>
<td>Posee una composición variada debido a la variedad de factores que la afectan y a la naturaleza de la población residente. Estas aguas radican en una mezcla de contaminantes orgánicos (materias fécales, residuos alimenticios, sales minerales y materiales domésticos de limpieza) e inorgánicos</td>
</tr>
<tr>
<td>(2) Residuales Industriales</td>
<td>Provenientes de cualquier actividad industrial o comercial no relacionadas directamente con los usos sanitarios (lavabos, inodoros, duchas de aseo personal). Su composición varía según el tipo de proceso industrial.</td>
</tr>
<tr>
<td>(3) Escorrentías de uso Agrícolas</td>
<td>Provienen de la escorrentía superficial de las zonas agrícolas. Se caracterizan por la presencia de pesticidas, sales y un alto contenido de sólidos en suspensión. La descarga de esta agua es recibida directamente por los ríos o por los alcantarillados.</td>
</tr>
<tr>
<td>(4) Pluviales</td>
<td>Originadas por el escurrimiento superficial de las lluvias que fluyen desde los techos, calles, jardines y demás superficies del terreno. Esta agua varía según su procedencia: zonas urbanas, rurales o semi-rurales.</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia
2.1.2 Características

Es importante conocer las características del agua residual para determinar los contaminantes que necesitan ser removidos y así proteger la salud y los recursos hídricos. Estas características se pueden dividir en tres grandes áreas: físicas, químicas y biológicas.

<table>
<thead>
<tr>
<th>CARACTERÍSTICAS</th>
<th>PROCEDENCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propiedades físicas</td>
<td></td>
</tr>
<tr>
<td>Color, olor, temperatura</td>
<td>A.R. (Aguas Residuales) domésticas e industriales</td>
</tr>
<tr>
<td>Constituyentes químicos orgánicos</td>
<td></td>
</tr>
<tr>
<td>Carbohidratos, grasas, aceites</td>
<td>A.R. domésticas, industriales y comerciales</td>
</tr>
<tr>
<td>Pesticidas</td>
<td>Residuos agrícolas</td>
</tr>
<tr>
<td>Fenoles</td>
<td>Vertidos industriales</td>
</tr>
<tr>
<td>Proteínas</td>
<td>A.R. domésticas, industriales y comerciales</td>
</tr>
<tr>
<td>Compuestos orgánicos volátiles</td>
<td>A.R. domésticas, industriales y comerciales</td>
</tr>
<tr>
<td>Contaminantes prioritarios</td>
<td>A.R. domésticas, industriales y comerciales</td>
</tr>
<tr>
<td>Constituyentes químicos inorgánicos</td>
<td></td>
</tr>
<tr>
<td>Alcalinidad</td>
<td>A.R. domésticas, agua de suministro</td>
</tr>
<tr>
<td>Cloruros</td>
<td>A.R. domésticas, agua de suministro</td>
</tr>
<tr>
<td>pH</td>
<td>A.R. domésticas, industriales y comerciales</td>
</tr>
<tr>
<td>Fósforo</td>
<td>A.R. domésticas, industriales y comerciales</td>
</tr>
<tr>
<td>Contaminantes prioritarios</td>
<td>A.R. domésticas, industriales y comerciales</td>
</tr>
<tr>
<td>Azufre</td>
<td>A.R. domésticas, agua de suministro</td>
</tr>
<tr>
<td>Gases</td>
<td></td>
</tr>
<tr>
<td>Sulfuro de hidrógeno</td>
<td>Descomposición de residuos domésticos</td>
</tr>
<tr>
<td>Metano</td>
<td>Descomposición de residuos domésticos</td>
</tr>
<tr>
<td>Oxígeno</td>
<td>Agua de suministro, infiltración de agua superficial</td>
</tr>
<tr>
<td>Constituyentes biológicos</td>
<td></td>
</tr>
<tr>
<td>Animales, Plantas</td>
<td>Cursos de agua y plantas de tratamiento</td>
</tr>
<tr>
<td>Protistas</td>
<td>A.R. domésticas, plantas de tratamiento, infiltración</td>
</tr>
<tr>
<td>Virus</td>
<td>Aguas residuales domésticas</td>
</tr>
</tbody>
</table>

Fuente: (Metcalf and Eddy, 1995)
2.1.3 Sustancias Contaminantes

El agua residual está compuesta por distintos tipos de contaminantes. Las normas que regulan los tratamientos secundarios están basadas en las tasas de eliminación de materia orgánica, sólidos en suspensión y patógenos en el agua residual. Las normas creadas más recientemente son más exigentes aún, porque consideran la eliminación de nutrientes y contaminantes prioritarios y si el efluente tratado se pretende reutilizar también se debe considerar la eliminación de compuestos orgánicos refractarios, metales pesados y sólidos inorgánicos disueltos (Metcalf and Eddy, 1995).

Hay un gran número de contaminantes del agua que se pueden clasificar de muy diferentes maneras. Una posibilidad bastante usada es agruparlos en los siguientes grupos:

- **Microorganismos patógenos:** Son los diferentes tipos de bacterias, virus, protozoos y otros organismos que transmiten enfermedades como el cólera, tifus, gastroenteritis diversas, hepatitis, etc. Normalmente estos microbios llegan al agua en las heces y otros restos orgánicos que producen las personas infectadas.

- **Desechos orgánicos:** Son el conjunto de residuos orgánicos producidos por los seres humanos, ganado, etc. Incluyen heces y otros materiales que pueden ser descompuestos por bacterias aeróbicas. Cuando este tipo de desechos se encuentran en exceso, la proliferación de bacterias agota el oxígeno, y ya no pueden vivir en estas aguas peces y otros seres vivos que necesitan oxígeno. Buenos índices para medir la contaminación por desechos orgánicos son la cantidad de oxígeno disuelto, OD, en agua, o la DBO (Demanda Biológica de Oxígeno).

- **Sustancias químicas inorgánicas:** En este grupo están incluidos ácidos, sales y metales tóxicos como el mercurio y el plomo. Si están en cantidades altas pueden causar graves daños a los seres vivos, disminuir los rendimientos agrícolas y corroer los equipos que se usan para trabajar con el agua.

- **Nutrientes vegetales inorgánicos:** Nitratos y fosfatos son sustancias solubles en agua que las plantas necesitan para su desarrollo, pero si se encuentran en cantidad excesiva inducen el crecimiento desmesurado de algas y otros organismos provocando la eutrofización de las aguas. Cuando estas algas y otros vegetales mueren, al ser descompuestos por los microorganismos, se agota el oxígeno y se...
hace imposible la vida de otros seres vivos. El resultado es un agua maloliente e inutilizable.

- **Compuestos orgánicos**: Muchas moléculas orgánicas como petróleo, gasolina, plásticos, plaguicidas, disolventes, detergentes, etc. acaban en el agua y permanecen, en algunos casos, largos períodos de tiempo, porque, al ser productos fabricados por el hombre, tienen estructuras moleculares complejas difíciles de degradar por los microorganismos.

- **Sedimentos y materiales suspendidos**: Muchas partículas arrancadas del suelo y arrastradas a las aguas, junto con otros materiales que hay en suspensión en las aguas, son, en términos de masa total, la mayor fuente de contaminación del agua. La turbidez que provocan en el agua dificulta la vida de algunos organismos, y los sedimentos que se van acumulando destruyen sitios de alimentación o desove de los peces, rellenan lagos o pantanos y obstruyen canales, ríos y puertos.

2.1.4 Biodegradabilidad

La biodegradación corresponde a la descomposición de la materia por organismos vivos (principalmente bacterias). Es una propiedad que tienen ciertos materiales para reintegrarse a la tierra por acción de la naturaleza, es lo que se denomina biodegradabilidad. Además, la biodegradabilidad, permite que las aguas residuales puedan ser depuradas por medio de microorganismos, los que utilizan como alimento y fuente de energía para su metabolismo y reproducción. Es precisamente la depuración de las aguas residuales, lo que va regenerando la disponibilidad del recurso agua y a la vez evita la contaminación de las fuentes de aguas existentes tanto superficiales como subterráneas. (Cisterna, 2003)

Existen dos tipos de procesos de biodegradación: la aeróbica (en presencia de oxígeno) en la que los productos resultantes de este proceso de degradación son biomasa, dióxido de carbono, agua y minerales; y la anaeróbica (ausencia de oxígeno) en la que los productos usualmente resultantes son biomasa, biogás (principalmente metano), agua, metabolitos intermedios y minerales.
2.2 Tratamiento de Aguas Residuales

El conocimiento de la naturaleza del agua residual es fundamental de cara a la elección del proceso de remoción de los contaminantes. Estos procesos se clasifican en: pretratamiento, tratamiento primario, tratamiento secundario y tratamiento terciario (avanzado).

2.2.1 Pretratamiento
Existen ciertos constituyentes de las aguas residuales que si no son eliminados eficazmente pueden producir serias averías en los equipos. Las piedras, arenas, latas, etc. Producen un gran desgaste en las tuberías y de las conducciones así como de las bombas. Sin embargo, a la planta también llegan grasas y aceites de todo tipo y que si no son eliminados en el pretratamiento producen que el tratamiento biológico se ralentice y el rendimiento de dicho tratamiento decaiga, obteniendo un efluente de baja calidad.

Con el pretratamiento se pretende separar del agua residual, tanto por operaciones física como mecánicas, la mayor cantidad de materias que por su naturaleza (grasas, aceites) o por su tamaño (ramas, latas) crearían problemas en los tratamientos posteriores. Por lo expuesto anteriormente, se puede ver la importancia del pretratamiento, escatimar medios o esfuerzos en esta parte de la planta es bajar el rendimiento del global de la planta, aunque tuviera el mejor tratamiento biológico.

2.2.2 Tratamiento Primario
Contempla el uso de operaciones físicas, tales como la sedimentación y el desbaste para la eliminación de los sólidos sedimentables y flotantes presentes en el agua residual. Este tratamiento tiene como propósito fundamental obtener un efluente clarificado, pero también es necesario producir un fango con una concentración de sólidos que pueda ser tratado con facilidad. Los más usados son los sedimentadores de tipo físico o químico.

2.2.3 Tratamiento Secundario
Realiza procesos biológicos y químicos, los cuales se emplean para eliminar la mayor parte de la materia orgánica. Estas metas se logran por medio de procesos aeróbicos y anaeróbicos, en los cuales la materia orgánica es metabolizada por diferentes cepas
bacterianas. Se pueden mencionar algunos tratamientos de tipo biológico como: lodos activos, filtros percoladores, lagunaje, biodiscos y humedales.

2.2.4 Tratamiento Terciario

La finalidad de este tratamiento es eliminar la carga orgánica residual y aquellas otras sustancias contaminantes no eliminadas en los tratamientos secundarios como por ejemplo los nutrientes fósforo y nitrógeno.

2.3 Lodos Activos

Un proceso de lodos activados, no es otra cosa que un tratamiento biológico que consiste básicamente en la agitación y aireación de una mezcla de agua de desecho y un lodo de microorganismos seleccionados. El uso de microorganismos, es para oxidar la materia orgánica presente en el agua de desecho y transformarla a una forma más estable, disminuyendo de esta forma la carga orgánica contaminante. Para llevar a cabo lo anterior, los microorganismos requieren de un medio adecuado que les proporcione oxígeno y alimento, necesarios para su desarrollo (tanque de aireación). Bajo estas condiciones dichos microorganismo se multiplican rápidamente formando la llamada “Biomasa”, que oxida los diferentes tipos de materia orgánica presente en las aguas residuales y completan de esta forma el tratamiento biológico.

La “Biomasa” formada en este proceso es posteriormente decantada en un tanque de sedimentación, desde donde parte de esta es recirculada nuevamente al tanque de aireación para mantener una concentración constante de microorganismos, mientras que el exceso es purgado del sistema.

Elementos básicos que debe tener un sistema de tratamientos de Lodos Activos:

a) Tanque de Aireación: Es la estructura donde se lleva a cabo la degradación de la materia orgánica presente en el agua residual.

b) Tanque de Sedimentación: Es donde llega el efluente del tanque de aireación que es sedimentado separando los sólidos suspendidos del agua tratada, obteniendo un efluente clarificado.
c) Equipos de Aireación: Inyección de oxígeno para que los microorganismos degraden la materia orgánica.

d) Sistema de Recirculacion de Lodos: El propósito de este sistema es mantener la población de microorganismos en el tanque de aireación.

e) Exceso de Lodos y su Depósito: El exceso de lodos, debido al crecimiento bacteriano en el tanque de aireación, son eliminados (Purga), tratados y dispuestos.

![Diagrama de Lodos Activos](image)

Figura 1: Sistema de Lodos Activos.
Fuente: Elaboración Propia.

2.4 Sistemas de Pretratamiento

2.4.1 Desbaste
Eliminación de sólidos gruesos (maderas, trapos, plástico) mediante retención y posterior extracción. Se realizan mediante rejas o tamices. Se suelen instalar en el canal de entrada a la planta, formados por barras paralelas separadas entre sí por un espacio menor que el diámetro o tamaño de las partículas a separar, y en general formando un ángulo de 30 a 80° con respecto a la superficie del efluente. La limpieza de la reja puede llevarse a cabo de
manera manual o de forma automática, depositándose los objetos en un cesto perforado que va goteando el agua sobre el canal de entrada. La separación de las rejas suele ser de 5-10 cm para las rejas manuales y de 1-5 cm para las automáticas.

2.4.2 Dilaceración
Dispositivo mecánico con discos cortantes que trituran los sólidos gruesos. Debe proporcionar un tamaño de partícula más o menos uniforme pero que no entorpezca la operación de las instalaciones situadas aguas abajo.

2.4.3 Desarenado
Separa la arena arrastrada que se encuentra en suspensión en el efluente. La arena desgasta las bombas y los conductos de presión, dificulta la eliminación y digestión de los lodos separados en los tanques de sedimentación. Puede retener también otros materiales como cáscaras de huevo, pedazos de hueso, granos de café, residuos de comidas. Puede ser de dos tipos:

 a) Desarenador de flujo horizontal: Consiste en un tanque o conjunto de canales de sedimentación proyectados para mantener un caudal de agua cercano a 0,3 m/s, consiguiendo la separación de partículas pesadas de diámetro superior a 0,2 mm. La profundidad va a depender del tiempo que tarda la partícula en alcanzar el fondo del tanque y de la capacidad de acumulación deseada. Presenta el problema del arrastre de la materia orgánica que se separa junto a la arena, que al descomponerse da lugar a malos olores. Por ello suelen lavarse, recogiéndose el agua de lavado para su inclusión en el tratamiento.

 b) Desarenador aireado: Permite trabajar a caudales mayores, obteniéndose una arena bien lavada. Se inyecta aire, proporcionando una circulación de las aguas en forma de espiral a través del tanque, aumentando así su longitud teórica. El fondo de los aireadores tiene una pendiente pronunciada que acaba en un canal pronunciado, sobre el cual pueden instalarse diferentes mecanismos de vaciado.
2.4.4 Desaceitado y Desengrasado

El desaceitado es una operación líquida, en tanto que el desengrase es una operación de separación sólido líquido. Por lo que el proceso de separación del agua puede ser por medio de dos tipos de tratamientos:

a) Tratamiento físico: Se utiliza cuando el contenido de grasa separable es apreciable, en cual es preciso instalar como primera etapa un sistema de separación grasa-aceite y agua, lo que reducirá la carga contaminante que está siendo descargada. Para grandes flujos estos ocupan grandes áreas de superficie, por lo que se han modificado a través de la introducción de placas paralelas, lamelas, especialmente diseñadas con lo que se ha mejorado la situación hidráulica en estas trampas y a la vez la capacidad de carga, éstas son las placas corrugadas y las placas separadoras inclinadas.

b) Tratamiento físico-químico: Este tipo de tratamiento se aplica a sistemas altamente emulsificados y dispersos, tal que el tamaño de las partículas de materia grasa es menor que 20 um, donde los procesos de separación por gravedad son absolutamente ineficientes. La estabilidad de los sistemas emulsificados puede ser explicada en términos de las cargas electrostáticas transportadas por las partículas. Las sustancias grasas en los influentes de la industria alimenticia son invariablemente cargadas negativamente, ocurre una repulsión partícula-partícula tal que inhibe la espontánea coagulación. La desestabilización de los sistemas emulsificados se alcanza a través de la neutralización de la carga por ajuste de pH, o la adición de un ion de carga opuesta. La efectividad de agregar iones se incrementa de acuerdo a la valencia que tenga el ion, tal que los iones trivalentes cargados positivamente como el hierro o el aluminio son frecuentemente empleados. En presencia de grandes polielectrolitos de aluminio se forman flóculos de grasas y/o aceites y así estos pueden ser separados por flotación o sedimentación.

2.4.5 Homogeneización

La caracterización del efluente puede variar durante el día, haciendo necesarios diversos ajustes de los parámetros de funcionamiento de la planta de tratamiento. Hay dos tipos:
a) Homogeneización en línea: el tanque de homogeneización está localizado en la misma dirección del flujo de las aguas, pasando por él la totalidad del caudal.

b) Homogeneización en derivación o paralelo: el tanque está separado del flujo de corriente principal, desviando a éste las aguas que excedan del caudal medio diario.

2.4.6 Mezclado
Se lleva a cabo en cualquiera de las fases del tratamiento. Se realiza para mezclar reactivos químicos y gases con el agua residual, y para mantener los sólidos en suspensión. El mezclado de un líquido puede realizarse entre otros sistemas, aprovechando el régimen turbulento de vehiculación: resaltes hidráulicos de canales, tubos tipos ventura, conducciones, bombas; o por turbulencia inducida: recipientes con ayuda de elementos mecánicos, como pueden ser agitadores o, chorros de gas o líquido. Destacan la mezcla de cloro o hipoclorito sódico, para la desinfección, adición de coadyuvantes de filtración, adición de floculantes o ajuntes de pH.

2.5 Parámetros de Diseño de Equipos de Tratamiento

Los principales parámetros de dimensionamiento que permiten caracterizar el funcionamiento de una planta Lodos Activos son:

2.5.1 Carga Másica \((C_m) \)
Es la relación que existe entre la carga de materia orgánica que entra en el reactor biológico por unidad de tiempo, y la masa de microorganismos existentes en el mismo. Se expresa como:

\[
C_m = \frac{F}{M} \left(\frac{Alimento}{Microorganismos} \right)
\]

\[
C_m = \frac{Q \cdot DBO}{V \cdot SSLM} \left(\frac{kg \ DBO}{kg \ SSLM \cdot \text{día}} \right)
\]
Donde:

✓ Q: Caudal a tratar (m3/día)
✓ DBO: Cantidad de DBO que entra al reactor por unidad de volumen (Kg/m3)
✓ V: Volumen del reactor biológico en m3
✓ SSLM: Concentración de sólidos en suspensión en el reactor (Kg SSLM/m3)

La literatura clasifica, según el valor de la carga másica, en tres tipos de procesos: aireación extendida, operación convencional y alta tasa. Se define el proceso de aireación extendida cuando la carga másica se encuentra entre 0,05 y 0,15. Si se analiza este rango se observa que los microorganismos disponen de una cantidad limitada de alimento por lo cual gran parte de ellos se encontrarán en situación de hambruna, con lo que se fomentará la descomposición endógena donde los más fuertes se comerán a los más débiles. Así el lodo estará más estabilizado. También se define el proceso de operación convencional cuando la carga másica se encuentra en un rango de 0,2 a 0,4, en el cual los microorganismos disponen de una cantidad moderada de sustrato. Por último se define el proceso de alta tasa con cargas másicas comprendidas entre 0,4 y 1,5, donde los microorganismos contenidos en el reactor biológico disponen de abundante sustrato. Cabe mencionar que esta última variante del proceso entrega lodos menos estabilizados por lo cual se hace necesaria la estabilización de lodos. (Metcalf and Eddy, 1995).

2.5.2 Edad Celular (Θ_c)

Representa el tiempo que los microorganismos permanecen en el sistema y se calcula de la siguiente manera:

$$\theta_c = \frac{V \cdot SSLM}{Q \cdot DBO \cdot Y} \quad (T)$$

Donde:

✓ V: Volumen del reactor biológico (m3)
✓ SSLM: Concentración de sólidos en suspensión en el reactor (Kg SSLM/m3)
1. Q: Caudal a tratar (m³/día)
2. DBO: Cantidad de DBO que entra al reactor por unidad de volumen (Kg/m³)
3. \(\Upsilon \): Coeficiente de productividad (adiimensional)

De acuerdo al tipo de proceso (aireación extendida, convencional, alta tasa) se establece la edad celular. Por ejemplo, para sistemas de aireación extendida los sólidos biológicos deberían permanecer en el sistema entre 20 a 30 días, en tanto que en un proceso de alta carga los sólidos deberían permanecer entre 5 a 10 días. Así se puede controlar la edad celular a niveles recomendados para el correcto desarrollo de la biodegradación y estabilización de los lodos. (Metcalf and Eddy, 1995).

2.5.3 Tiempo de Residencia Hidráulica \((T_R) \)
Representa el tiempo que permanece el agua residual en contacto con la biomasa. Se calcula a través de la siguiente expresión:

\[T_R = \frac{V_{\text{reactor}}}{Q_{\text{entrada}}} \quad [T] \]

2.5.4 Tasa Hidráulica \((T_h) \)
Este parámetro corresponde a la velocidad de filtración y se expresa de la siguiente manera:

\[T_h = \frac{Q}{A} \left[\frac{m^3}{(hrm^2)} \right] \]

Cuanto menor sea la relación gasto/área \((Q/A) \), menor es el gasto o flujo por unidad de área del filtro, lo cual tiene como consecuencia una más eficiente remoción de los sólidos suspendidos, pero por otro lado, si se desea trabajar con bajos valores \(Q/A \) se requerirá de una gran superficie de filtración para un gasto de agua específico. El valor de diseño seleccionado finalmente dependerá de factores tales como: disponibilidad de terreno, presupuesto o recursos disponibles, calidad deseada del agua tratada, características del agua a filtrar, etc.
2.6 Ensayos Físicos y Químicos que caracterizan al Agua Residual

2.6.1 Sólidos Suspendidos Totales (SST)

El agua residual contiene una variedad de materiales sólidos que varían desde hilachas hasta materiales coloidales. Los sólidos suspendidos totales son aquellos residuos remanentes después que la muestra ha sido evaporada y secada a una temperatura específica de 103 a 105 °C.

2.6.2 Sólidos Suspendidos Volátiles (SSV)

Estos sólidos pueden ser volatizados e incinerados cuando los SST son calcinados a una temperatura específica de 500 ± 50 °C.

2.6.3 Índice Volumétrico de Lodos (IVL)

Volumen en mililitros (ml) ocupado por 1 gramo (g) del licor mezclado del tanque de aireación después de 30 minutos de sedimentación. El IVL se determina midiendo el volumen depositado después de 30 minutos y la correspondiente concentración de SST.

El valor numérico, para una muestra de 100 ml, se puede calcular:

\[
IVL \left(\frac{ml}{g} \right) = \frac{\text{vol}_{30 \min} \left(\frac{ml}{100ml} \right)}{\text{SST} \left(\frac{mg}{l} \right) \cdot \left(\frac{1g}{1000mg} \right) \cdot \left(\frac{1l}{1000ml} \right)}
\]

\[
IVL \left(\frac{ml}{g} \right) = \frac{\text{vol}_{30 \min} \cdot 10000}{\text{SST}}
\]

Donde:

- \(\text{Vol}_{30 \min} \): Volumen sedimentado en 30 minutos.
- \(\text{SST} \): Concentración de sólidos en suspensión en el reactor (Kg SSLM/m3)

La clasificación de lodos según el índice volumétrico de lodos se indica a continuación:
Tabla 3: Clasificación del IVL

<table>
<thead>
<tr>
<th>Tipo de Lodo</th>
<th>IVL (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buena Sedimentación</td>
<td>< 100</td>
</tr>
<tr>
<td>Ligera</td>
<td>100 - 200</td>
</tr>
<tr>
<td>Bulking</td>
<td>> 200</td>
</tr>
</tbody>
</table>

Fuente: (Warnner, 1994)

2.6.4 Oxígeno Disuelto (OD)
El oxígeno disuelto adecuado se necesita para una buena calidad del agua. El oxígeno es un elemento necesario para todas las formas de vida. El agua de las plantas tratadoras de aguas residuales frecuentemente contienen materiales orgánicos que son descompuestos por microorganismos, que utilizan el oxígeno en los procesos donde los niveles deben estar entre 2 a 4 mg/l.

2.6.5 Ph
Este parámetro es una forma práctica de comparar la acidez o la alcalinidad relativa de una solución a una temperatura dada. El pH en un tratamiento biológico debe oscilar entre 6 y 8 unidades de pH para garantizar la supervivencia de los microorganismos.

2.6.6 Temperatura
La importancia de la temperatura viene dada porque los cambios en la temperatura del agua residual pueden modificar la velocidad de las reacciones que intervienen en el proceso.

2.6.7 Demanda Bioquímica de Oxígeno (DBO)
La cantidad de oxígeno consumida por microorganismos en el rompimiento de los residuos se conoce como demanda bioquímica de oxígeno. Debido a que una estabilización completa requiere de mucho tiempo, se define otro parámetro, DBO5.

2.6.8 DBO5
Este parámetro mide la cantidad de oxígeno disuelto en una muestra de agua, antes y después de cinco días de incubación a 20°C.
2.6.9 *Demanda Química de Oxígeno (DQO)*

La prueba de la DQO es usada para medir el material orgánico presente en las aguas residuales, susceptible de ser oxidado químicamente con una solución de bicromato en medio ácido.
3 METODOLOGÍA DEL ESTUDIO

3.1 Estudio de Antecedentes

3.2 Identificación de parámetros de dimensionamiento

3.3 Selección de parámetros a monitorear

3.3.1 Ensayos a realizar en el campo

3.3.2 Ensayos de laboratorio

3.4 Reconocimiento de la norma chilena oficial para la realización de ensayos

3.5 Monitorear la planta

3.6 Registro de antecedentes recopilados

3.7 Análisis de datos

3.8 Discusión y Conclusiones

3.9 Recomendaciones para optimizar el proceso
3.1 Estudio de Antecedentes
Tiende relación con todo el material bibliográfico recopilado y al estudio de éste para adquirir un conocimiento acabado de cómo funciona una planta de tratamiento de aguas residuales por Lodos Activos. Además, debe haber un reconocimiento a la zona de estudio, que en este caso es la empresa Ewos Chile Alimentos Ltda., lo que conlleva cumplir una serie de requisitos que impone dicha empresa.

3.2 Identificación de los parámetros de dimensionamiento
En todo proceso se pueden identificar distintos parámetros que lo caracterizan y que permiten reconocer si hay algún tipo de problema o irregularidad. En el caso de este estudio, se dan a conocer en el capítulo 2, los que indican claramente si el sistema está funcionando adecuadamente.

3.3 Selección de parámetros a monitorear
Dentro de todos los parámetros mencionados sólo se consideraron los más representativos para el monitoreo de la planta. Se mencionarán a continuación:

✓ SST
✓ SSV
✓ DQO
✓ OD
✓ IVL
✓ T°
✓ Ph
✓ SSe

3.3.1 Ensayos a realizar en el campo
Son aquéllos que se pueden medir in situ, como la T°, el OD y el Ph.
3.3.2 Ensayos de Laboratorio

Algunos de los parámetros no pueden ser medidos en el campo, entre los cuales se puede mencionar: SST, SSV, DQO, IVL, SSe, es por eso que deben ser llevados al laboratorio para su posterior análisis.

a) Implementación y equipos

Luego del reconocimiento general de la zona de estudio, la empresa dispuso del laboratorio, donde se encuentran todos los instrumentos y equipos necesarios para realizar los ensayos correspondientes.

b) Recolección de muestras

Una vez teniendo al alcance toda la implementación necesaria, se comienza con la toma de muestras en algunos puntos específicos de la planta.

3.4 Reconocimiento de la norma chilena oficial para la realización de ensayos

Para que los datos sean fidedignos se deben realizar los ensayos, rigiéndose por la norma vigente (Nch 2313/3.of95), la que describe claramente todos los pasos a seguir para trabajar con las muestras.

3.5 Monitorear la planta

Posteriormente al reconocimiento de los parámetros representativos y a conocer cómo trabajar con las muestras, se pueden realizar ensayos periódicamente. Lo que permite recolectar una base de datos, tanto de los parámetros como de la purga.

3.6 Registro de antecedentes recopilados

Para que el proceso sea posteriormente analizado es imprescindible llevar un historial con los datos obtenidos semana a semana.

3.7 Análisis de datos

Una vez que se cuenta con un importante número de resultados, se puede comenzar con el estudio de los datos.
3.8 Discusión y conclusiones

Al finalizar el estudio es importante comparar y discutir los datos previamente analizados, obteniendo información concluyente sobre el funcionamiento de la planta durante el periodo de medición.

3.9 Recomendaciones para optimizar el proceso

Permite dar una óptima utilidad gracias a información recabada, proporcionando las sugerencias necesarias para optimizar los procesos de la planta.
4 RESULTADOS

4.1 Monitoreo de los Parámetros Operacionales

El monitoreo fue en puntos donde cobra relevancia la información que se puede obtener, para evaluar el trabajo del Flotador o el sistema de depuración de las aguas residuales. Como se explicó en el tercer capítulo, sólo se consideraron ciertos parámetros. Las mediciones se realizaron tres veces por semana. Los puntos considerados se muestran en la siguiente tabla 4 y en el Anexo B.

<table>
<thead>
<tr>
<th>PUNTO</th>
<th>UNIDAD</th>
<th>UBICACIÓN ESPECÍFICA</th>
<th>OBJETIVO</th>
<th>ENSAYOS A REALIZAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.1</td>
<td>Afluente</td>
<td>Antes del Flotador</td>
<td>Registrar el contenido del influente de origen industrial.</td>
<td>SST, SSV, DQO.</td>
</tr>
<tr>
<td>P.2</td>
<td>Efluente</td>
<td>Después del Flotador</td>
<td>Verificar si se reducen los parámetros operacionales.</td>
<td>SST, SSV, DQO.</td>
</tr>
<tr>
<td>P.3</td>
<td>Tanque Biológico</td>
<td>Tanque Biológico</td>
<td>Controlar la calidad de los Lodos Activos.</td>
<td>SST, SSV, DQO, OD, IVL.</td>
</tr>
<tr>
<td>P.4</td>
<td>Efluente Final</td>
<td>Hacia el Emisario</td>
<td>Verificar que lo vertido en el emisario esté permitido.</td>
<td>DQO, Ph, T°, SSε.</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia

4.1.1 Flotador Pasivo con Sistema de Pantallas

En esta etapa del proceso se centra el estudio de la presente tesis, el cual es un sistema de separación de aguas, por tratamiento físico. Éste reemplaza al desengrasador API que ya no cumplía con las exigencias de la planta. El actual tiene un diseño distinto, caracterizándose por: un menor volumen que facilita su limpieza, genera menos contaminación en su entorno (menos olores desagradables), cuenta con un barredor mecánico de acción manual y dado que concentra las grasas, aceites y sólidos genera un menor volumen de residuos. (A continuación, se expondrán los resultados del monitoreo mensual entre Abril y Septiembre, en el Anexo A se detallarán mes por mes).
Tabla 5: Resultados Mensuales del Flotador

<table>
<thead>
<tr>
<th></th>
<th>Entrada</th>
<th></th>
<th></th>
<th>Salida</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SST</td>
<td>SSV</td>
<td>DQO</td>
<td>SST</td>
<td>SSV</td>
<td>DQO</td>
</tr>
<tr>
<td>Abril</td>
<td>2770</td>
<td>5605</td>
<td>1275</td>
<td>5660</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mayo</td>
<td>3552</td>
<td>3081</td>
<td>8702</td>
<td>2390</td>
<td>2171</td>
<td>6697</td>
</tr>
<tr>
<td>Junio</td>
<td>2250</td>
<td>2039</td>
<td>6466</td>
<td>1245</td>
<td>1175</td>
<td>3895</td>
</tr>
<tr>
<td>Julio</td>
<td>1673</td>
<td>1396</td>
<td>6668</td>
<td>950</td>
<td>810</td>
<td>4061</td>
</tr>
<tr>
<td>Agosto</td>
<td>3143</td>
<td>2789</td>
<td>6374</td>
<td>295</td>
<td>264</td>
<td>2371</td>
</tr>
<tr>
<td>Septiembre</td>
<td>2658</td>
<td>2392</td>
<td>8760</td>
<td>251</td>
<td>227</td>
<td>2717</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia

En el mes de Abril no se pudo realizar el ensayo para obtener los SSV debido a que no estaba en buen estado el horno mufla. Para visualizar claramente que el Flotador cumple con su objetivo de reducir los contaminantes se exponen los resultados de la siguiente manera:

![Resultado Mensuales](image)

Figura 2: Relación entre los SST de entrada y salida del Flotador

Fuente: Elaboración Propia.
Figura 3: Relación entre los SSV de entrada y salida del Flotador
Fuente: Elaboración Propia.

Figura 4: Relación entre la DQO de entrada y salida del Flotador
Fuente: Elaboración Propia.
4.1.2 Estanque Biológico

La importancia del pretratamiento es evitar que ingresen a procesos posteriores materiales y fluidos que puedan afectar el normal comportamiento de la planta depuradora. El tanque biológico informa acerca de la efectividad del sistema de pretratamiento, es por eso que fue muy importante incluirlo en el plan de monitoreo. Al igual que en el punto anterior veremos las mediciones mensuales y el detalle estará en el Anexo A.

<table>
<thead>
<tr>
<th></th>
<th>SST</th>
<th>SSV</th>
<th>OD</th>
<th>IVL</th>
<th>DQO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abril</td>
<td>5508</td>
<td>3599</td>
<td>2,3</td>
<td>81,2</td>
<td>5819</td>
</tr>
<tr>
<td>Mayo</td>
<td>4157</td>
<td>2996</td>
<td>2,4</td>
<td>76,1</td>
<td>5691</td>
</tr>
<tr>
<td>Junio</td>
<td>7169</td>
<td>6015</td>
<td>1,1</td>
<td>67,6</td>
<td>9823</td>
</tr>
<tr>
<td>Julio</td>
<td>7666</td>
<td>6397</td>
<td>0,3</td>
<td>119,7</td>
<td>10409</td>
</tr>
<tr>
<td>Agosto</td>
<td>8172</td>
<td>6815</td>
<td></td>
<td>118,1</td>
<td>10629</td>
</tr>
<tr>
<td>Septiembre</td>
<td>5790</td>
<td>4740</td>
<td>0,6</td>
<td>113,3</td>
<td>8187</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia

Los SST deberían estar en el orden de los 4000 (mg/l), sin embargo este margen no afecta la calidad de los lodos ni al proceso de síntesis de materia orgánica. Este argumento se sustenta en el control del IVL que está en un rango de buena o ligera sedimentación.

![Resultados Mensuales](image)

Figura 5: Valores de SST y SSV en el Estanque Biológico

Fuente: Elaboración Propia.
4.1.3 Efluente Final

La finalidad de todo el esfuerzo por depurar el influente de aguas residuales de proceso, es para enviar a través del emisario un efluente que cumpla con la normativa vigente, que evite cualquier tipo de alteración en el medio ambiente. Los resultados muestran que los SST se reducen considerablemente y se mantiene un Ph inferior al máximo permitido que es 9 en la escala de alcalinidad- acidez (1-14).

<table>
<thead>
<tr>
<th>Tabla 7: Resultados Mensuales del Efluente Final</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSe</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>Abril</td>
</tr>
<tr>
<td>Mayo</td>
</tr>
<tr>
<td>Junio</td>
</tr>
<tr>
<td>Julio</td>
</tr>
<tr>
<td>Agosto</td>
</tr>
<tr>
<td>Septiembre</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia
A continuación se expondrán gráficamente los resultados anteriores, llama la atención la cantidad de SSe en el mes de Septiembre, sin embargo hay que considerar que el monitoreo realizado durante ese mes fue sólo durante 3 días.

Figura 7: Valores SSe en el Efluente

Fuente: Elaboración Propia.

Figura 8: Valores Ph en el Efluente

Fuente: Elaboración Propia.
4.2 Monitoreo de las Purgas en el Flotador

Al contar con un nuevo sistema de retención de grasas, aceites y sólidos se deben implementar nuevas operaciones y una de las más importantes es la realización de las purgas. Las Purgas no se estaban realizando de manera correcta, no cumplían ni con el tiempo ni con la frecuencia adecuada. Para poder confeccionar un cronograma eficiente de purgas se realizaron dos sencillos ensayos por un periodo de dos meses aproximadamente, los cuales arrojaron conclusiones claras y precisas que ayudarán a los operarios a evitar problemas.

El primero tiene relación con la cantidad de SST y la altura de estos sólidos en el fondo del Flotador, ayudará a tener un parámetro de altura máxima de los sedimentos para que el Flotador cumpla su función correctamente. El segundo, con la cantidad de minutos que se debe purgar para que el sistema siga funcionando como corresponde. Luego de mencionar los ensayos realizados se muestran gráficamente los resultados.

4.2.1 Relación Altura – SST

El ensayo se realizó de la siguiente manera: se utiliza una varilla envuelta en una tela blanca, ésta es sumergida en el Flotador, lo que al sacarla permite apreciar claramente la altura de los sólidos, el segundo paso es sacar una muestra del fondo para realizar el ensayo de SST, teniendo estos dos datos se pueden enfrentar en una gráfica.

En la Figura 9 se obtiene una relación directa entre la altura y los SST, mientras más altos están los sólidos, más grande será el valor de los SST en el fondo del Flotador. La Figura 10 nos entrega una información relevante, cuando la altura de los sólidos no supera los 30 cm, se mantiene una baja concentración de SST, superando esta altura la concentración aumenta bruscamente a valores muy elevados. Por lo tanto se puede afirmar que la altura prudente para que el sistema funcione adecuadamente no debe traspasar los 30 cm.
Figura 9: Tendencia Altura – SST en el Flotador
Fuente: Elaboración Propia.

Figura 10: Relación Altura – SST en el fondo del Flotador
Fuente: Elaboración Propia.
4.2.2 Tiempo de Purga

Contando con la valiosa información de la altura límite de trabajo, ahora se debe centrar el estudio en cuanto es el tiempo de purga para llegar a esa altura. Por lo que se realizó el siguiente ensayo: se purga el Flotador cada dos minutos, midiendo la altura que descienden los sólidos en ese periodo de tiempo, la altura se mide utilizando el mismo instrumento que en el ensayo anterior, es decir, una vara cubierta con una tela blanca.

<table>
<thead>
<tr>
<th>Tabla 8: Resultados Purgas cada 2 min en el Flotador durante Agosto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiempo (Min)</td>
</tr>
<tr>
<td>14-08-2012</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>16-08-2013</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>21-08-2013</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>22-08-2013</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>8</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia
Se observa que los niveles bajaron a lo más a 23 cm, este rango es difícil de disminuir, puesto que al purgar a esa altura se expulsa mayormente líquido.

Otro aspecto relevante, que nos entregan estas tablas, es que purgando entre 6 y 8 minutos se llega a una altura inferior a los 30 cm, asegurándonos que la concentración de sólidos en el fondo sea baja y así pueda operar sin sobresaltos el Flotador.

4.3 Residuos Generados

Unos de los problemas del sistema de pretratamiento anterior era la gran cantidad de residuos que generaba, esto se traducía en costos adicionales para la empresa en el trasporte de este material excedente. Se cuenta con un registro (facilitado por la empresa) de los kilos transportados durante los años 2010, 2011 y 2012. Sin embargo, no se cuenta con el detalle de lo que generaba, únicamente, el desengrasador API, ya que según lo informado los datos que se muestran a continuación (TK API) incluye la limpieza de otros estanques. La falta de esta información no permite confeccionar un monto claro de cuanto es el real ahorro de en dicho ámbito.
Tabla 10: Datos Históricos de Disposición de Residuos

<table>
<thead>
<tr>
<th>Suma de Kilos</th>
<th>Tipo TKAPI</th>
<th>Total general</th>
</tr>
</thead>
<tbody>
<tr>
<td>Año</td>
<td>Mes</td>
<td></td>
</tr>
<tr>
<td>2.010</td>
<td>3</td>
<td>21.170</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>19.520</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>24.100</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>25.180</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>17.410</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>22.250</td>
</tr>
<tr>
<td>Total 2010</td>
<td></td>
<td>129.630</td>
</tr>
<tr>
<td>2.011</td>
<td>1</td>
<td>19.850</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>24.800</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>23.640</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>25.550</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>21.680</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>21.790</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>22.330</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>23.130</td>
</tr>
<tr>
<td>Total 2011</td>
<td></td>
<td>182.770</td>
</tr>
<tr>
<td>2.012</td>
<td>2</td>
<td>22.010</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>21.330</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>22.050</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>41.510</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>18.860</td>
</tr>
<tr>
<td>Total 2012</td>
<td></td>
<td>125.760</td>
</tr>
<tr>
<td>Total general</td>
<td></td>
<td>438.160</td>
</tr>
</tbody>
</table>

Fuente: Ewos Chile Alimentos Ltda.

Tabla 11: Residuos Generados Abril – Septiembre 2012

<table>
<thead>
<tr>
<th>Flotador Pasivo</th>
<th>Año</th>
<th>Mes</th>
<th>Residuos (Kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2012</td>
<td>Abril</td>
<td>4000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mayo</td>
<td>4000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Junio</td>
<td>4000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Julio</td>
<td>4000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Agosto</td>
<td>4000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>20000</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia
En el escenario presente se compararán sólo los años 2011 y 2012, ya que la producción fue similar (en el año 2010 decayó debido a daños ocasionados por el terremoto). También se debe considerar que durante los primeros meses del 2012 se incluye el volumen dispuesto por el reemplazo del estanque (desengrasador API).

Según los datos obtenidos entre Abril y Septiembre del 2012, se generaban al mes 4 m3 de grasas y aceites, si se considera que la densidad de estos fluidos es cercana a 1 g/cm3 en estado sólido, se tiene aproximadamente 4000 kilos al mes. Lo que es considerablemente menor en comparación con el sistema anterior. Sería indispensable, para poder llegar al monto exacto ahorrado, tener el detalle de lo generado solo por el desengrasador API. Sin embargo, con la información presente se puede afirmar que el nuevo sistema es un real aporte en cuanto al ahorro en el transporte de residuos.
5 CONCLUSIONES Y RECOMENDACIONES

El presente estudio permitió, evaluar el comportamiento del Flotador Pasivo y verificar el aporte al actual sistema de tratamiento de aguas que está presente en la empresa Ewos Chile Alimentos Ltda. El resultado de este monitoreo entrega resultados alentadores, puesto que el pretratamiento cumple con todas las expectativas que un comienzo se crearon. La eficacia de este sistema se manifiesta en tres puntos muy relevantes:

- Se verifica que el Flotador Pasivo con Sistema de Pantallas es capaz de reducir los contaminantes, demostrando un excelente diseño para las características del influente de origen industrial. Además, a simple vista se observa la capacidad de retención de grasas y aceites, que posteriormente son retirados por un barredor mecánico superficial que se acciona manualmente. Esta capacidad permite que los procesos siguientes no sean afectador por el material nombrado, ya que si no son retenidos, pueden influir negativamente en el estanque biológico afectando al proceso de depuración de las aguas. Debido a la efectividad del proceso se obtiene un efluente final de alta calidad, con bajos niveles de SST y Ph dentro de lo permitido por la norma chilena.

- Al comparar el actual sistema de pretratamiento con el anterior, se comprueba que el actual está por encima en varios aspectos, como por ejemplo: la menor área que ocupa dentro de la empresa, genera menos contaminación en cuanto a los olores (un punto relevante, considerando que se encuentra ubicada a pocos metros del casino de los funcionarios), facilita su limpieza y remoción de residuos. Este último aspecto es el que marca más diferencias, puesto que el anterior sistema generaba en promedio, aproximadamente, 20000 kilos al mes y el actual sólo 4000 kilos mensualmente, lo que se traduce en ahorro para la empresa en conceptos de traslado de material, o bien utilizar esos recursos en trasladar residuos generados en otros lugares de la empresa.

- Uno de los aspectos a considerar, dentro del monitoreo, fue la frecuencia y el modo en que se realizaban las purgas en el Flotador. Se constató que las purgas no se estaban realizando de manera correcta, ya que lo que se realizaba era una limpieza total del sistema. Es por ello que se realizaron ensayos para conocer la frecuencia
con la que los operarios debían purgar. Se constató que el sistema de pretratamiento funciona eficazmente cuando los residuos en el fondo no superan los 30 cm de altura, ya que al superar esta barrera los SST crecen considerablemente mermando la capacidad del flotador. También, se pudo verificar que la cantidad de tiempo que se debe purgar para alcanzar alturas inferiores a los 30 cm, está entre 6 a 8 minutos. Es por ello, que se propone purgar diariamente dentro del tiempo especificado, no se recomienda purgas por un tiempo más prolongado, ya que la experiencia muestra que después se expulsa más líquido que sedimento.
6 BIBLIOGRAFÍA

ANEXOS
ÍNDICE GENERAL ANEXOS

ANEXOS .. 39

ANEXO A: MONITOREO MENSUAL DE PARÁMETROS OPERACIONALES...43

- Mes: Abril... 44
- Mes: Mayo.. 45
- Mes: Junio .. 47
- Mes: Julio ... 48
- Mes: Agosto ... 50
- Mes: Septiembre ... 52

ANEXO B: PUNTOS DE MEDICIÓN EN LA PLANTA ... 53
ÍNDICE DE FIGURAS

Figura B1: Punto 1 de Medición.. 54
Figura B2: Punto 1 de Medición.. 54
Figura B3: Punto 2 de Medición ... 55
Figura B4: Punto 2 de Medición ... 55
Figura B5: Punto 3 de Medición.. 56
Figura B6: Punto 3 de Medición.. 56
Figura B7: Punto 4 de Medición.. 57
Figura B8: Punto 4 de Medición.. 57
ÍNDICE DE TABLAS

Tabla A1: Flotador Pasivo con Sistema de Pantallas ... 44
Tabla A2: Estanque Biológico ... 44
Tabla A3: Efluente Final .. 45
Tabla A4: Flotador Pasivo con Sistema de Pantallas ... 45
Tabla A5: Estanque Biológico ... 46
Tabla A6: Efluente Final .. 46
Tabla A7: Flotador Pasivo con Sistema de Pantallas ... 47
Tabla A8: Estanque Biológico ... 47
Tabla A9: Efluente Final .. 48
Tabla A10: Flotador Pasivo con Sistema de Pantallas ... 48
Tabla A11: Estanque Biológico ... 49
Tabla A12: Efluente Final ... 49
Tabla A13: Flotador Pasivo con Sistema de Pantallas ... 50
Tabla A14: Estanque Biológico .. 50
Tabla A15: Efluente Final ... 51
Tabla A16: Flotador Pasivo con Sistema de Pantallas ... 51
Tabla A17: Estanque Biológico .. 51
Tabla A18: Efluente Final ... 52
ANEXO A: MONITOREO MENSUAL DE PARÁMETROS OPERACIONALES
Meses: Abril

Tabla A1: Flotador Pasivo con Sistema de Pantallas

<table>
<thead>
<tr>
<th></th>
<th>Entrada</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>Salida</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SST</td>
<td>SSV</td>
<td>DQO</td>
<td>SST</td>
<td>SSV</td>
<td>DQO</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>10-04-2012</td>
<td>2487</td>
<td></td>
<td></td>
<td>1647</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>11-04-2012</td>
<td>2416</td>
<td></td>
<td></td>
<td>850</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>12-04-2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>16-04-2012</td>
<td>3251</td>
<td></td>
<td></td>
<td>1489</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>17-04-2012</td>
<td>1132</td>
<td></td>
<td></td>
<td>756</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>19-04-2012</td>
<td>1894</td>
<td></td>
<td></td>
<td>987</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>20-04-2012</td>
<td>2643</td>
<td></td>
<td></td>
<td>1487</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>23-04-2012</td>
<td>3758</td>
<td></td>
<td></td>
<td>1285</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>24-04-2012</td>
<td>4125</td>
<td></td>
<td></td>
<td>2598</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>25-04-2012</td>
<td>4826</td>
<td></td>
<td></td>
<td>2375</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>26-04-2012</td>
<td>1478</td>
<td>3730</td>
<td></td>
<td>248</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>27-04-2012</td>
<td>2455</td>
<td>7480</td>
<td>305</td>
<td>5660</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla A2: Estanque Biológico

<table>
<thead>
<tr>
<th></th>
<th>SST</th>
<th>SSV</th>
<th>OD</th>
<th>IVL</th>
<th>DQO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10-04-2012</td>
<td>6815</td>
<td>5071</td>
<td>2,15</td>
<td>8790</td>
</tr>
<tr>
<td>2</td>
<td>11-04-2012</td>
<td>5159</td>
<td>3281</td>
<td>2,41</td>
<td>5347</td>
</tr>
<tr>
<td>3</td>
<td>12-04-2012</td>
<td>5044</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>16-04-2012</td>
<td>6877</td>
<td></td>
<td>2,48</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>17-04-2012</td>
<td>6500</td>
<td>1,75</td>
<td></td>
<td>5042</td>
</tr>
<tr>
<td>6</td>
<td>19-04-2012</td>
<td>6825</td>
<td>1,97</td>
<td></td>
<td>7770</td>
</tr>
<tr>
<td>7</td>
<td>20-04-2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>23-04-2012</td>
<td>7254</td>
<td>1,98</td>
<td></td>
<td>5946</td>
</tr>
<tr>
<td>9</td>
<td>24-04-2012</td>
<td></td>
<td>2,32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>25-04-2012</td>
<td>3115</td>
<td>2,91</td>
<td></td>
<td>4380</td>
</tr>
<tr>
<td>11</td>
<td>26-04-2012</td>
<td>4289</td>
<td>2,41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>27-04-2012</td>
<td>3203</td>
<td>2445</td>
<td>2,8</td>
<td>81,17</td>
</tr>
</tbody>
</table>
Tabla A3: Efluente Final

<table>
<thead>
<tr>
<th></th>
<th>SSe</th>
<th>Ph</th>
<th>T°</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10-04-2012</td>
<td>99</td>
<td>6,2</td>
</tr>
<tr>
<td>2</td>
<td>11-04-2012</td>
<td>67</td>
<td>6,2</td>
</tr>
<tr>
<td>3</td>
<td>12-04-2012</td>
<td>73</td>
<td>6,3</td>
</tr>
<tr>
<td>4</td>
<td>16-04-2012</td>
<td>75</td>
<td>6,3</td>
</tr>
<tr>
<td>5</td>
<td>17-04-2012</td>
<td>78</td>
<td>6,7</td>
</tr>
<tr>
<td>6</td>
<td>19-04-2012</td>
<td>51</td>
<td>7,1</td>
</tr>
<tr>
<td>7</td>
<td>20-04-2012</td>
<td>59</td>
<td>6,4</td>
</tr>
<tr>
<td>8</td>
<td>23-04-2012</td>
<td>4,6</td>
<td>20,7</td>
</tr>
<tr>
<td>9</td>
<td>24-04-2012</td>
<td>Limpiesa</td>
<td>Limpiesa</td>
</tr>
<tr>
<td>10</td>
<td>25-04-2012</td>
<td>Limpiesa</td>
<td>Limpiesa</td>
</tr>
<tr>
<td>11</td>
<td>26-04-2012</td>
<td>Limpiesa</td>
<td>Limpiesa</td>
</tr>
<tr>
<td>12</td>
<td>27-04-2012</td>
<td>95</td>
<td>6,8</td>
</tr>
</tbody>
</table>

Mes: Mayo

Tabla A4: Flotador Pasivo con Sistema de Pantallas

<table>
<thead>
<tr>
<th></th>
<th>Entrada</th>
<th>Salida</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SST</td>
<td>SSV</td>
</tr>
<tr>
<td>1</td>
<td>02-05-2012</td>
<td>3355</td>
</tr>
<tr>
<td>2</td>
<td>04-05-2012</td>
<td>778</td>
</tr>
<tr>
<td>3</td>
<td>07-05-2012</td>
<td>3350</td>
</tr>
<tr>
<td>4</td>
<td>09-05-2012</td>
<td>1140</td>
</tr>
<tr>
<td>5</td>
<td>11-05-2012</td>
<td>148</td>
</tr>
<tr>
<td>6</td>
<td>14-05-2012</td>
<td>14880</td>
</tr>
<tr>
<td>7</td>
<td>16-05-2012</td>
<td>6348</td>
</tr>
<tr>
<td>8</td>
<td>18-05-2012</td>
<td>85</td>
</tr>
<tr>
<td>9</td>
<td>23-05-2012</td>
<td>2048</td>
</tr>
<tr>
<td>10</td>
<td>25-05-2012</td>
<td>1228</td>
</tr>
<tr>
<td>11</td>
<td>28-05-2012</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>29-05-2012</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>30-05-2012</td>
<td>5708</td>
</tr>
</tbody>
</table>
Tabla A5: Estanque Biológico

<table>
<thead>
<tr>
<th></th>
<th>SST</th>
<th>SSV</th>
<th>OD</th>
<th>IVL</th>
<th>DQO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>02-05-2012</td>
<td>3338</td>
<td>2808</td>
<td>2,4</td>
<td>102</td>
</tr>
<tr>
<td>2</td>
<td>04-05-2012</td>
<td>3555</td>
<td>2600</td>
<td>2,18</td>
<td>81,57</td>
</tr>
<tr>
<td>3</td>
<td>07-05-2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>09-05-2012</td>
<td>2380</td>
<td>1960</td>
<td>2,46</td>
<td>67,2</td>
</tr>
<tr>
<td>5</td>
<td>11-05-2012</td>
<td>2495</td>
<td>1902</td>
<td>2,37</td>
<td>68,13</td>
</tr>
<tr>
<td>6</td>
<td>14-05-2012</td>
<td>2773</td>
<td>2313</td>
<td>2,31</td>
<td>86,54</td>
</tr>
<tr>
<td>7</td>
<td>16-05-2012</td>
<td>4848</td>
<td>3723</td>
<td>2,31</td>
<td>61,88</td>
</tr>
<tr>
<td>8</td>
<td>18-05-2012</td>
<td>4708</td>
<td>3775</td>
<td>2,47</td>
<td>74,34</td>
</tr>
<tr>
<td>9</td>
<td>23-05-2012</td>
<td>4673</td>
<td>3740</td>
<td>2,3</td>
<td>77,03</td>
</tr>
<tr>
<td>10</td>
<td>25-05-2012</td>
<td>4473</td>
<td>3598</td>
<td>2,29</td>
<td>87,18</td>
</tr>
<tr>
<td>11</td>
<td>28-05-2012</td>
<td>5935</td>
<td>1068</td>
<td>2,28</td>
<td>67,39</td>
</tr>
<tr>
<td>12</td>
<td>29-05-2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>30-05-2012</td>
<td>6550</td>
<td>5467</td>
<td>2,52</td>
<td>64,12</td>
</tr>
</tbody>
</table>

Tabla A6: Efluente Final

<table>
<thead>
<tr>
<th></th>
<th>SSe</th>
<th>Ph</th>
<th>T°</th>
<th>DQO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>02-05-2012</td>
<td>69</td>
<td>6,7</td>
<td>17,8</td>
</tr>
<tr>
<td>2</td>
<td>04-05-2012</td>
<td>75</td>
<td>8,45</td>
<td>20,5</td>
</tr>
<tr>
<td>3</td>
<td>07-05-2012</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>09-05-2012</td>
<td>358</td>
<td>8,55</td>
<td>17,9</td>
</tr>
<tr>
<td>5</td>
<td>11-05-2012</td>
<td>85</td>
<td>8,78</td>
<td>18,3</td>
</tr>
<tr>
<td>6</td>
<td>14-05-2012</td>
<td>40</td>
<td>9,21</td>
<td>18,3</td>
</tr>
<tr>
<td>7</td>
<td>16-05-2012</td>
<td>62</td>
<td>8,79</td>
<td>17,1</td>
</tr>
<tr>
<td>8</td>
<td>18-05-2012</td>
<td>32</td>
<td>9,14</td>
<td>15,9</td>
</tr>
<tr>
<td>9</td>
<td>23-05-2012</td>
<td>73</td>
<td>9,27</td>
<td>16,3</td>
</tr>
<tr>
<td>10</td>
<td>25-05-2012</td>
<td>40</td>
<td>9,29</td>
<td>17,2</td>
</tr>
<tr>
<td>11</td>
<td>28-05-2012</td>
<td>32</td>
<td>9,35</td>
<td>17,4</td>
</tr>
<tr>
<td>12</td>
<td>29-05-2012</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>30-05-2012</td>
<td>25</td>
<td>9,46</td>
<td>18,6</td>
</tr>
</tbody>
</table>
Mes: Junio

Tabla A7: Flotador Pasivo con Sistema de Pantallas

<table>
<thead>
<tr>
<th></th>
<th>Entrada</th>
<th></th>
<th></th>
<th></th>
<th>Salida</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SST</td>
<td>SSV</td>
<td>DQO</td>
<td>SST</td>
<td>SSV</td>
<td>DQO</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>01-06-2012</td>
<td>553</td>
<td>528</td>
<td>3210</td>
<td>1145</td>
<td>1067</td>
<td>3800</td>
</tr>
<tr>
<td>2</td>
<td>04-06-2012</td>
<td>3258</td>
<td>3070</td>
<td>12700</td>
<td>10788</td>
<td>10315</td>
<td>9540</td>
</tr>
<tr>
<td>3</td>
<td>06-06-2012</td>
<td>2463</td>
<td>1940</td>
<td>12290</td>
<td>748</td>
<td>683</td>
<td>4000</td>
</tr>
<tr>
<td>4</td>
<td>08-06-2012</td>
<td>6810</td>
<td>6032</td>
<td>15280</td>
<td>138</td>
<td>85</td>
<td>4810</td>
</tr>
<tr>
<td>5</td>
<td>11-06-2012</td>
<td>643</td>
<td>595</td>
<td>2690</td>
<td>705</td>
<td>660</td>
<td>4400</td>
</tr>
<tr>
<td>6</td>
<td>13-06-2012</td>
<td>2825</td>
<td>2517</td>
<td>7300</td>
<td>733</td>
<td>683</td>
<td>3330</td>
</tr>
<tr>
<td>7</td>
<td>15-06-2012</td>
<td>7158</td>
<td>6945</td>
<td>6080</td>
<td>860</td>
<td>815</td>
<td>4520</td>
</tr>
<tr>
<td>8</td>
<td>18-06-2012</td>
<td>500</td>
<td>462</td>
<td>5720</td>
<td>110</td>
<td>90</td>
<td>3890</td>
</tr>
<tr>
<td>9</td>
<td>20-06-2012</td>
<td>3170</td>
<td>2687</td>
<td>6760</td>
<td>170</td>
<td>135</td>
<td>2350</td>
</tr>
<tr>
<td>10</td>
<td>22-06-2012</td>
<td>308</td>
<td>300</td>
<td>4150</td>
<td>158</td>
<td>153</td>
<td>3280</td>
</tr>
<tr>
<td>11</td>
<td>25-06-2012</td>
<td>270</td>
<td>255</td>
<td>2140</td>
<td>165</td>
<td>152</td>
<td>1350</td>
</tr>
<tr>
<td>12</td>
<td>27-06-2012</td>
<td>1253</td>
<td>1148</td>
<td>4600</td>
<td>270</td>
<td>255</td>
<td>3430</td>
</tr>
<tr>
<td>13</td>
<td>29-06-2012</td>
<td>40</td>
<td>22</td>
<td>1140</td>
<td>190</td>
<td>185</td>
<td>1930</td>
</tr>
</tbody>
</table>

Tabla A8: Estanque Biológico

<table>
<thead>
<tr>
<th></th>
<th>SST</th>
<th>SSV</th>
<th>OD</th>
<th>IVL</th>
<th>DQO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>01-06-2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>04-06-2012</td>
<td>4743</td>
<td>4140</td>
<td>2,19</td>
<td>56,93</td>
</tr>
<tr>
<td>3</td>
<td>06-06-2012</td>
<td>5270</td>
<td>4300</td>
<td>2,46</td>
<td>55,03</td>
</tr>
<tr>
<td>4</td>
<td>08-06-2012</td>
<td>5353</td>
<td>4563</td>
<td>0,4</td>
<td>80,33</td>
</tr>
<tr>
<td>5</td>
<td>11-06-2012</td>
<td>6990</td>
<td>5767</td>
<td>0,6</td>
<td>67,24</td>
</tr>
<tr>
<td>6</td>
<td>13-06-2012</td>
<td>6895</td>
<td>5770</td>
<td>0,55</td>
<td>78,32</td>
</tr>
<tr>
<td>7</td>
<td>15-06-2012</td>
<td>7201</td>
<td>5793</td>
<td>0,37</td>
<td>80,54</td>
</tr>
<tr>
<td>8</td>
<td>18-06-2012</td>
<td>6743</td>
<td>5715</td>
<td>4,17</td>
<td>69,7</td>
</tr>
<tr>
<td>9</td>
<td>20-06-2012</td>
<td>7385</td>
<td>6182</td>
<td>0,21</td>
<td>79,89</td>
</tr>
<tr>
<td>10</td>
<td>22-06-2012</td>
<td>6980</td>
<td>5620</td>
<td>0,5</td>
<td>10,6</td>
</tr>
<tr>
<td>11</td>
<td>25-06-2012</td>
<td>12060</td>
<td>10402</td>
<td>0,15</td>
<td>78,77</td>
</tr>
<tr>
<td>12</td>
<td>27-06-2012</td>
<td>9450</td>
<td>8117</td>
<td>84,66</td>
<td>13100</td>
</tr>
<tr>
<td>13</td>
<td>29-06-2012</td>
<td>6963</td>
<td>5811</td>
<td>0,35</td>
<td>68,94</td>
</tr>
</tbody>
</table>
Tabla A9: Efluente Final

<table>
<thead>
<tr>
<th></th>
<th>SSe</th>
<th>Ph</th>
<th>T°</th>
<th>DQO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>01-06-2012</td>
<td></td>
<td></td>
<td>Sin nivel</td>
</tr>
<tr>
<td>2</td>
<td>04-06-2012</td>
<td>36</td>
<td>7,5</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>06-06-2012</td>
<td>38</td>
<td>7,5</td>
<td>210</td>
</tr>
<tr>
<td>4</td>
<td>08-06-2012</td>
<td>30</td>
<td>7,5</td>
<td>120</td>
</tr>
<tr>
<td>5</td>
<td>11-06-2012</td>
<td>48</td>
<td>7,5</td>
<td>120</td>
</tr>
<tr>
<td>6</td>
<td>13-06-2012</td>
<td>70</td>
<td>7,5</td>
<td>250</td>
</tr>
<tr>
<td>7</td>
<td>15-06-2012</td>
<td>63</td>
<td>7,5</td>
<td>280</td>
</tr>
<tr>
<td>8</td>
<td>18-06-2012</td>
<td></td>
<td></td>
<td>Sin Nivel</td>
</tr>
<tr>
<td>9</td>
<td>20-06-2012</td>
<td>62</td>
<td>7,2</td>
<td>80</td>
</tr>
<tr>
<td>10</td>
<td>22-06-2012</td>
<td>55</td>
<td>7,2</td>
<td>200</td>
</tr>
<tr>
<td>11</td>
<td>25-06-2012</td>
<td>86</td>
<td>7,2</td>
<td>210</td>
</tr>
<tr>
<td>12</td>
<td>27-06-2012</td>
<td></td>
<td></td>
<td>Sin Nivel</td>
</tr>
<tr>
<td>13</td>
<td>29-06-2012</td>
<td>32</td>
<td>7,2</td>
<td>290</td>
</tr>
</tbody>
</table>

Mes: Julio

Tabla A10: Flotador Pasivo con Sistema de Pantallas

<table>
<thead>
<tr>
<th></th>
<th>Entrada</th>
<th>Salida</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SST</td>
<td>SSV</td>
</tr>
<tr>
<td>1</td>
<td>04-07-2012</td>
<td>125</td>
</tr>
<tr>
<td>2</td>
<td>06-07-2012</td>
<td>1205</td>
</tr>
<tr>
<td>3</td>
<td>09-07-2012</td>
<td>845</td>
</tr>
<tr>
<td>4</td>
<td>11-07-2012</td>
<td>5693</td>
</tr>
<tr>
<td>5</td>
<td>13-07-2012</td>
<td>1218</td>
</tr>
<tr>
<td>6</td>
<td>20-07-2012</td>
<td>1048</td>
</tr>
<tr>
<td>7</td>
<td>23-07-2012</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>25-07-2012</td>
<td>235</td>
</tr>
<tr>
<td>9</td>
<td>27-07-2012</td>
<td>3125</td>
</tr>
<tr>
<td>10</td>
<td>30-07-2012</td>
<td>1560</td>
</tr>
</tbody>
</table>
Tabla A11: Estanque Biológico

<table>
<thead>
<tr>
<th></th>
<th>SST</th>
<th>SSV</th>
<th>OD</th>
<th>IVL</th>
<th>DQO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>04-07-2012</td>
<td>6780</td>
<td>5512</td>
<td>0,3</td>
<td>100,29</td>
</tr>
<tr>
<td>2</td>
<td>06-07-2012</td>
<td>7338</td>
<td>6088</td>
<td>124,01</td>
<td>8340</td>
</tr>
<tr>
<td>3</td>
<td>09-07-2012</td>
<td>7228</td>
<td>5858</td>
<td>131,43</td>
<td>9390</td>
</tr>
<tr>
<td>4</td>
<td>11-07-2012</td>
<td>7935</td>
<td>6512</td>
<td>120,98</td>
<td>8970</td>
</tr>
<tr>
<td>5</td>
<td>13-07-2012</td>
<td>5898</td>
<td>5078</td>
<td>152,59</td>
<td>8290</td>
</tr>
<tr>
<td>6</td>
<td>20-07-2012</td>
<td>7895</td>
<td>6637</td>
<td>113,99</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>23-07-2012</td>
<td>7848</td>
<td>6663</td>
<td>120,05</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>25-07-2012</td>
<td>8515</td>
<td>7200</td>
<td>113,92</td>
<td>13510</td>
</tr>
<tr>
<td>9</td>
<td>27-07-2012</td>
<td>9558</td>
<td>8025</td>
<td>100,44</td>
<td>13740</td>
</tr>
<tr>
<td>10</td>
<td>30-07-2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla A12: Efluente Final

<table>
<thead>
<tr>
<th></th>
<th>SSe</th>
<th>Ph</th>
<th>T°</th>
<th>DQO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>04-07-2012</td>
<td>21</td>
<td>7,2</td>
<td>170</td>
</tr>
<tr>
<td>2</td>
<td>06-07-2012</td>
<td>42</td>
<td>8</td>
<td>160</td>
</tr>
<tr>
<td>3</td>
<td>09-07-2012</td>
<td>29</td>
<td>7,7</td>
<td>190</td>
</tr>
<tr>
<td>4</td>
<td>11-07-2012</td>
<td>12</td>
<td>7,1</td>
<td>90</td>
</tr>
<tr>
<td>5</td>
<td>13-07-2012</td>
<td>10</td>
<td>7,8</td>
<td>170</td>
</tr>
<tr>
<td>6</td>
<td>20-07-2012</td>
<td>50</td>
<td>7,5</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>23-07-2012</td>
<td>65</td>
<td>7,8</td>
<td>300</td>
</tr>
<tr>
<td>8</td>
<td>25-07-2012</td>
<td>113</td>
<td>8</td>
<td>110</td>
</tr>
<tr>
<td>9</td>
<td>27-07-2012</td>
<td>159</td>
<td></td>
<td>240</td>
</tr>
<tr>
<td>10</td>
<td>30-07-2012</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Mes: Agosto

Tabla A13: Flotador Pasivo con Sistema de Pantallas

<table>
<thead>
<tr>
<th></th>
<th>Entrada</th>
<th></th>
<th></th>
<th>Salida</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SST</td>
<td>SSV</td>
<td>DQO</td>
<td>SST</td>
<td>SSV</td>
<td>DQO</td>
</tr>
<tr>
<td>1</td>
<td>01-08-2012</td>
<td>528</td>
<td>485</td>
<td>2520</td>
<td>293</td>
<td>263</td>
</tr>
<tr>
<td>2</td>
<td>03-08-2012</td>
<td>19238</td>
<td>16965</td>
<td>15850</td>
<td>325</td>
<td>302</td>
</tr>
<tr>
<td>3</td>
<td>06-08-2012</td>
<td>708</td>
<td>625</td>
<td>3960</td>
<td>423</td>
<td>400</td>
</tr>
<tr>
<td>4</td>
<td>08-08-2012</td>
<td>2135</td>
<td>2000</td>
<td>6910</td>
<td>48</td>
<td>43</td>
</tr>
<tr>
<td>5</td>
<td>09-08-2012</td>
<td>890</td>
<td>810</td>
<td>4750</td>
<td>248</td>
<td>233</td>
</tr>
<tr>
<td>6</td>
<td>14-08-2012</td>
<td>1060</td>
<td>940</td>
<td>4340</td>
<td>198</td>
<td>183</td>
</tr>
<tr>
<td>7</td>
<td>16-08-2013</td>
<td>8173</td>
<td>7423</td>
<td>16240</td>
<td>233</td>
<td>208</td>
</tr>
<tr>
<td>8</td>
<td>21-08-2013</td>
<td>303</td>
<td>165</td>
<td>2530</td>
<td>23</td>
<td>15</td>
</tr>
<tr>
<td>9</td>
<td>22-08-2013</td>
<td>2695</td>
<td>2345</td>
<td>11420</td>
<td>1250</td>
<td>1107</td>
</tr>
<tr>
<td>10</td>
<td>28-08-2012</td>
<td>765</td>
<td>692</td>
<td>2860</td>
<td>100</td>
<td>85</td>
</tr>
<tr>
<td>11</td>
<td>29-08-2012</td>
<td>448</td>
<td>380</td>
<td>1660</td>
<td>85</td>
<td>60</td>
</tr>
<tr>
<td>12</td>
<td>30-08-2012</td>
<td>778</td>
<td>635</td>
<td>3450</td>
<td>318</td>
<td>268</td>
</tr>
</tbody>
</table>

Tabla A14: Estanque Biológico

<table>
<thead>
<tr>
<th></th>
<th>SST</th>
<th>SSV</th>
<th>OD</th>
<th>IVL</th>
<th>DQO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>01-08-2012</td>
<td>14118</td>
<td>11350</td>
<td>29,04</td>
<td>14320</td>
</tr>
<tr>
<td>2</td>
<td>03-08-2012</td>
<td>7215</td>
<td>6005</td>
<td>120,58</td>
<td>10410</td>
</tr>
<tr>
<td>3</td>
<td>06-08-2012</td>
<td>7023</td>
<td>5878</td>
<td>132,24</td>
<td>8880</td>
</tr>
<tr>
<td>4</td>
<td>08-08-2012</td>
<td>7303</td>
<td>6120</td>
<td>131,45</td>
<td>10930</td>
</tr>
<tr>
<td>5</td>
<td>09-08-2012</td>
<td>8225</td>
<td>7047</td>
<td>115,08</td>
<td>12380</td>
</tr>
<tr>
<td>6</td>
<td>14-08-2012</td>
<td>8045</td>
<td>6760</td>
<td>120,57</td>
<td>10080</td>
</tr>
<tr>
<td>7</td>
<td>16-08-2013</td>
<td>8720</td>
<td>7392</td>
<td>111,23</td>
<td>12070</td>
</tr>
<tr>
<td>8</td>
<td>21-08-2013</td>
<td>6315</td>
<td>5305</td>
<td>152,01</td>
<td>7980</td>
</tr>
<tr>
<td>9</td>
<td>22-08-2013</td>
<td>6567</td>
<td>5564</td>
<td>146,19</td>
<td>8340</td>
</tr>
<tr>
<td>10</td>
<td>28-08-2012</td>
<td>8810</td>
<td>7507</td>
<td>111,23</td>
<td>9810</td>
</tr>
<tr>
<td>11</td>
<td>29-08-2012</td>
<td>7533</td>
<td>6245</td>
<td>128,77</td>
<td>9630</td>
</tr>
<tr>
<td>12</td>
<td>30-08-2012</td>
<td>8185</td>
<td>6605</td>
<td>118,5</td>
<td>12720</td>
</tr>
</tbody>
</table>
Tabla A15: Efluente Final

<table>
<thead>
<tr>
<th>SSe</th>
<th>Ph</th>
<th>Tº</th>
<th>DQO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>01-08-2012</td>
<td>82</td>
<td>75</td>
</tr>
<tr>
<td>2</td>
<td>03-08-2012</td>
<td>67</td>
<td>60</td>
</tr>
<tr>
<td>3</td>
<td>06-08-2012</td>
<td>95</td>
<td>80</td>
</tr>
<tr>
<td>4</td>
<td>08-08-2012</td>
<td>110</td>
<td>80</td>
</tr>
<tr>
<td>5</td>
<td>09-08-2012</td>
<td>43</td>
<td>80</td>
</tr>
<tr>
<td>6</td>
<td>14-08-2012</td>
<td>32</td>
<td>210</td>
</tr>
<tr>
<td>7</td>
<td>16-08-2013</td>
<td>108</td>
<td>300</td>
</tr>
<tr>
<td>8</td>
<td>21-08-2013</td>
<td>96</td>
<td>80</td>
</tr>
<tr>
<td>9</td>
<td>22-08-2013</td>
<td>108</td>
<td>180</td>
</tr>
<tr>
<td>10</td>
<td>28-08-2012</td>
<td>85</td>
<td>130</td>
</tr>
<tr>
<td>11</td>
<td>29-08-2012</td>
<td>84</td>
<td>130</td>
</tr>
<tr>
<td>12</td>
<td>30-08-2012</td>
<td>77</td>
<td>320</td>
</tr>
</tbody>
</table>

Mes: Septiembre

Tabla A16: Flotador Pasivo con Sistema de Pantallas

<table>
<thead>
<tr>
<th>Entrada</th>
<th>Salida</th>
</tr>
</thead>
<tbody>
<tr>
<td>SST</td>
<td>SSV</td>
</tr>
<tr>
<td>04-09-2012</td>
<td>5905</td>
</tr>
<tr>
<td>05-09-2012</td>
<td>833</td>
</tr>
<tr>
<td>11-09-2012</td>
<td>1235</td>
</tr>
</tbody>
</table>

Tabla A17: Estanque Biológico

<table>
<thead>
<tr>
<th>SST</th>
<th>SSV</th>
<th>OD</th>
<th>IVL</th>
<th>DQO</th>
</tr>
</thead>
<tbody>
<tr>
<td>04-09-2012</td>
<td>5323</td>
<td>4323</td>
<td>82,66</td>
<td>8180</td>
</tr>
<tr>
<td>05-09-2012</td>
<td>5815</td>
<td>4902</td>
<td>103,12</td>
<td>8280</td>
</tr>
<tr>
<td>11-09-2012</td>
<td>6233</td>
<td>4995</td>
<td>0,6</td>
<td>154,01</td>
</tr>
<tr>
<td></td>
<td>SSE</td>
<td>Ph</td>
<td>T°</td>
<td>DQO</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>1</td>
<td>04-09-2012</td>
<td>111</td>
<td>7,09</td>
<td>17,7</td>
</tr>
<tr>
<td>2</td>
<td>05-09-2012</td>
<td>163</td>
<td>6,36</td>
<td>18,9</td>
</tr>
<tr>
<td>3</td>
<td>11-09-2012</td>
<td>89</td>
<td>6,71</td>
<td>18,7</td>
</tr>
</tbody>
</table>
ANEXO B: PUNTOS DE MEDICIÓN EN LA PLANTA
Figura B1: Punto 1 de Medición

![Figura B1: Punto 1 de Medición]

Figura B2: Punto 1 de Medición

![Figura B2: Punto 1 de Medición]
Figura B3: Punto 2 de Medición

Figura B4: Punto 2 de Medición
Figura B5: Punto 3 de Medición

Figura B6: Punto 3 de Medición
Figura B7: Punto 4 de Medición

Figura B8: Punto 4 de Medición