Universidad del Bío-Bío. Sistema de Bibliotecas - Chile

UNIVERSIDAD DEL BÍO-BÍO

FACULTAD DE INGENIERÍA DEPTO. DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA

ESTUDIO DE COORDINACIÓN DE PROTECCIONES ELÉCTRICAS EN PLANTA ELÉCTRICA TÍPICA

AUTORES: FABIAN ANDRÉS ACUÑA ACUÑA CLAUDIO VICENTE MONROY ALARCÓN

> SEMINARIO PARA OPTAR AL TÍTULO DE INGENIERO DE EJECUCIÓN EN ELECTRICIDAD

> > CONCEPCIÓN – CHILE

2016

Índice

Resum	en6
Plantea	amiento del trabajo7
Objetiv	/os7
C	CAPÍTULO 1: ESTUDIO DE CARGAS
1.1.	Fundamentos9
1.2.	Consideraciones
1.2.1.	Escenario con el SIC y generador en servicio10
1.2.2.	Escenario de operación sólo con Generador en servicio11
1.3.	Cálculo de parámetros del sistema12
1.3.1.	Cargas pasivas12
1.3.2.	Motores sincrónicos12
1.3.3.	Transformadores12
C	CAPÍTULO 2:
C Y	CALCULO DE PARAMETROS DE LOS COMPONENTES DE LA RED ELECTRICA Z REGULACIÓN DE TENSIÓN
2.1.	Fundamento 16
2.2.	Consideraciones
2.3.	Dimensionamiento de las líneas16
2.3.1.	Cálculo de corrientes nominales16
2.3.2.	Fundamento teórico cálculo mecánico de las líneas17
2.3.2.1	. Primera aplicación (Condición crítica)17
2.3.2.2	. Segunda aplicación (flecha a 30°C)18
2.3.2.3	. Soporte mecánico de las líneas19
2.3.3.	Desarrollo cálculo mecánico de las líneas19
2.3.3.1	. Cálculo mecánico de la línea 119
2.3.3.1	.1. Primera aplicación (aplicación crítica)20
2.3.3.1	.2. Segunda aplicación (Flecha a 30°C)21
2.3.3.2	. Cálculo mecánico de la línea 222
2.3.3.2	.1. Primera aplicación (aplicación crítica)23
2.3.3.2	.2. Segunda aplicación (Flecha a 30°C)24
2.3.3.3	. Cálculo mecánico de la línea 325
2.3.3.3	.1. Primera aplicación (aplicación crítica)26
2.3.3.3	.2. Segunda aplicación (Flecha a 30 °C)27

2.3.4.	Cálculo Parámetros de líneas28
2.3.4.1	Parámetros de la línea 129
2.3.4.2	Parámetros de la línea 230
2.3.4.3	8. Parámetros de la línea 331
2.4.	Estimación parámetros de los componentes del SEP32
2.4.1.	Estimación Parámetros SIC32
2.4.2.	Estimación de Parámetros de los trasformadores33
2.4.3.	Estimación de Parámetros del Generador35
2.4.4.	Estimación de parámetros de los motores sincrónicos35
2.5.	Regulación de tensión
2.5.1.	Cálculo regulación de tensión primer escenario
2.5.2.	Cálculo regulación de tensión considerando el segundo escenario43
	CAPÍTULO 3: CÁLCULO DE CORTOCIRCUITOS FALLA MÁXIMA Y MÍNIMA46
3.1.	Fundamentos
3.2.	Cálculo de cortocircuito trifásico, falla máxima, para el escenario con presencia del SIC y el
Genera	ador48
3.2.1.	Cortocircuito 3ø en Barra –B048
3.2.2.	Cortocircuito 3ø en Barra –B150
3.2.3.	Cortocircuito 3ø en Barra –B251
3.2.4.	Cortocircuito 3ø en Barra – B353
3.2.5.	Cortocircuito 3ø en Barra – B455
3.2.6.	Cortocircuito 3ø en Barra – B557
3.2.7.	Resumen de valores obtenidos58
3.3.	Cálculo de cortocircuito trifásico en las barras, Falla Máxima, suministro con generador59
3.3.1.	Cortocircuito 3ø en Barra – B360
3.3.2.	Cortocircuito 3ø en Barra –B462
3.3.3.	Cortocircuito 3ø en Barra – B563
3.3.4.	Resumen de datos obtenidos65
3.4. presen	Cálculo de cortocircuito trifásico en las barras, falla mínima, para el escenario con ncia del SIC y el Generador66
3.5.	Cálculo de cortocircuito trifásico en las barras, falla mínima, suministro con generador66
3.6.	Dimensionamiento De Interruptores67
3.6.1.	Dimensionamiento del interruptor I-068

3.6.2.	Interruptor I-0	69
3.6.2.1.	F0-1: Falla al lado izquierdo del interruptor I-0	69
3.6.2.1.1.	Calculo corriente momentánea simétrica:	69
3.6.2.1.2.	Calculo corriente momentánea asimétrica:	69
3.6.2.1.3.	Calculo corriente ruptura simétrica:	69
3.6.2.1.4.	Cálculo corriente ruptura asimétrica:	69
3.6.2.2.	F0-2: Falla al lado derecho del interruptor I-0	70
3.6.2.2.1.	Cálculo corriente momentánea simétrica:	70
3.6.2.2.3.	Cálculo corriente ruptura simétrica:	70
3.6.2.2.4.	Cálculo corriente ruptura asimétrica:	70
3.6.3.	Dimensionamiento de interruptores I-1 al I-12	71
CA	PÍTULO 4: ESTUDIO DE	74
CO	ORDINACIÓN DE PROTECCIONES	74
4.1. Fu	Indamentos	74
4.2. Ar	nálisis de falla trifásica en las barras (30 ciclos)	77
4.2.1.	Análisis de falla trifásica en barra BO Primer escenario	77
4.2.2.	Análisis de falla trifásica en barra B1 Primer escenario	79
4.2.3.	Análisis de falla trifásica en barra B2 Primer escenario	81
4.2.4.	Análisis de falla trifásica en barra B3 Primer escenario	83
4.2.5.	Análisis de falla trifásica en barra B4 Primer escenario	84
4.2.6.	Análisis de falla trifásica en barra B5 Primer escenario	87
4.2.7.	Análisis de falla trifásica en barra B3 Segundo escenario	89
4.2.8.	Análisis de falla trifásica en barra B4 Segundo escenario	91
4.2.9.	Análisis de falla trifásica en barra B5 Segunda escenario	93
CAPÍTULC) 5: COMENTARIOS Y CONCLUSIONES	95
5.1. Co	omentarios, conclusiones y bibliografía	95
ANEXOS A	4	98
ANEXOS E	3	103
ANEXOS (2	105
ANEXO D		111
ANEXOS E	E	114
ANEXOS F	-	117

Resumen

En el presente informe de seminario, se detalla el procedimiento de cálculo para realizar un estudio de coordinación de protecciones.

Descripción:

Capítulo 1.

Se describe en términos generales el estudio de cargas de la red eléctrica detallando los escenarios de operación, el dimensionamiento preliminar de los trasformadores, líneas de transmisión y distribución (cálculo técnico y un cuadro de resumen de cargas).

Capítulo 2.

Se realiza el cálculo para el dimensionamiento de líneas de distribución y transmisión abordando todos los parámetros asociados, especialmente el cálculo eléctrico y mecánico, además se dimensionan los componentes pertenecientes a las red eléctrica, llegando a un diagrama de impedancias en por unidad (PU), además se presenta el cálculo de regulación de tensión como lo exige la norma.

Capítulo 3.

Se realiza el cálculo de cortocircuitos trifásicos y resumen de falla empleando el cálculo en PU, estos resultados se comparan mediante el software ETAP, Se realiza el dimensionamiento de los interruptores de poder mediante el cálculo de corriente momentánea y de ruptura: en ambos casos se evalúan las corrientes simétrica y asimétrica en ambos lados de los interruptores, cuando se requiera.

Capítulo 4.

Se realiza el análisis de coordinación de protecciones, empleando como herramienta de apoyo, el software Etap, el cual entrega una simulación donde se puede analizar la secuencia de operación y la carta de coordinación de las protecciones, ante una falla trifásica en cada uno de los escenarios planteados.

Capítulo 5.

Se realiza el análisis de los resultados obtenidos, generando los comentarios y conclusiones del presente seminario.

Planteamiento del trabajo

El objetivo principal del seminario, es realizar una coordinación de protecciones, la que asegure la continuidad del servicio en la red eléctrica, priorizando la seguridad de las personas y equipos asociados, asegurando la confiabilidad, selectividad, sensibilidad y rapidez de las protecciones instaladas, para que actúen ante los dos escenarios propuestos.

En tal sentido, se analiza un sistema de protecciones que incorpora relés GENERAL ELECTRIC multifunción y específicamente sus ajustes para sobre corriente de fase, habilitando las funciones 50/51 según corresponda ante fallas trifásicas.

Para los propósitos del estudio se contempla emplear como herramienta de apoyo el SOFTWARE ETAP.

Objetivos

Dimensionar cada uno de los componentes de SEP y obtener sus parámetros eléctricos para diseñar una red de impedancias que permita realizar los cálculos de cortocircuito trifásico empleando los valores un PU.

Una vez obtenidos los resultados de cortocircuitos en cada una de las barras se obtienen las magnitudes de corrientes de falla trifásica en los distintos sectores del SEP, esto permite apreciar los aportes de corrientes de falla, que se utilizan posteriormente en el estudio del sistema de protecciones.

Considerando la información de ajustes existentes en los relés asociados al sistema de protecciones eléctricas de la red en estudio, se realiza un estudio de coordinación de protecciones para falla trifásica, empleando como herramienta de apoyo el software Etap 6.0.

Universidad del Bío-Bío. Sistema de Bibliotecas - Chile

CAPÍTULO 1: ESTUDIO DE CARGAS

Capítulo 1: Estudio de cargas

1.1. Fundamentos

En el presente capítulo se describen las características de los componentes de la red eléctrica en estudio y cuyo diagrama unilineal se presenta en la Figura 1.1.

Figura 1.1: Diagrama unilineal de la red eléctrica en estudio

1.2. Consideraciones

Con referencia al diagrama unilineal de la figura 1.1 el estudio de los sistemas de protecciones eléctricas, contempla evaluar dos escenarios de operación.

- a.- Escenario con el SIC y el GENERADOR en servicio.
- b.- Escenario sólo con el GENERADOR en servicio.

1.2.1. Escenario con el SIC y generador en servicio

El primer escenario considera la presencia del SIC y el generador según se presenta en la figura 1.2.

Figura 1.2: Escenario de operación con el SIC y Generador en servicio

1.2.2. Escenario de operación sólo con Generador en servicio

El segundo escenario considera el suministro de energía eléctrica mediante el generador, el cual energiza las subestaciones N°2 y N°3, dado que el generador es capaz de mantener las cargas criticas asociadas a dichas subestaciones. En tal sentido, el diagrama unilineal para este escenario se presenta en la figura 1.3.

Figura 1.3: Generador alimentando subestaciones 2 y 3

1.3. Cálculo de parámetros del sistema

1.3.1. Cargas pasivas

Con referencia al diagrama unilineal de la instalación (Ver figura 1.1), es posible identificar cuatro cargas pasivas (que no aportan a un cortocircuito) y cuyo datos se resumen en la Tabla 1.1.

Carga	Potencia	Voltaje nominal KV	Factor de Potencia	Angulo L°	P (MW)	Q(MVAR)
SO	30 MVA	154	0,98 Inductivo	11,48	29,39	+j 5 <i>,</i> 970
S1	20 MVA	110	0,86 Inductivo	30,68	17,20	+j10,20
S2	10 MVA	110	0,87 Inductivo	29,54	8,700	+ j4,930
S3	10 MVA	23	0,88 Inductivo	28,36	8,790	+j4,750

Tabla 1.1: Resumen	cargas	pasivas
--------------------	--------	---------

1.3.2. Motores sincrónicos

Por otro lado, es posible identificar dos motores sincrónicos que dada su potencia, suministran energía frente a un cortocircuito. En tal sentido, en la Tabla 1.2 se resumen los datos más relevantes .

Motor	Potencia MVA	Voltaje nominal KV	Factor de potencia	Angulo	P(MW)	Q(MVAR)	Z(PU)	X/R
MS1	10	6,6	0,9 cap	-25,84	9,00	-j4,35	8 4 88	47
MS2	10	6,6	0,9 cap	-25,84	9,00	-j4,35	11 4 88	47
G1	50	11	0,9 ind.	25,84	45,0	21,79	2,3 4 88	51

Tabla 1.2: Descripción de maquinas sincronicas

Cabe destacar que en relación con la operación de los motores, se contempla una operación sobrexcitada con factor de potencia capacitivo.

Con referencia a los parámetros X/R de los motores, se han empleado datos característicos, los cuales se presentan en el Anexo A.

1.3.3. Transformadores

Con referencia al diagrama unilineal de la red eléctrica (Figura 1.1) se establece la necesidad de determinar la potencia de cada uno de los cuatro transformadores.

1.3.3.1. Transformador N°4

En relación con el trasformador T4, la potencia viene dada por los dos motores sincrónicos.

Así se tiene:

$$S_{T4} = S_{M1} + S_{M2} = (9 - J4,35) + (9 - j4,35) = 18 - j8,718 = \sqrt{18^2 + 8,718^2} = 20 MVA$$

Por tanto se selecciona para el transformador T4 una potencia nominal de 20 MVA.

1.3.3.2. Transformador N°3

En relación con el trasformador T3, la potencia viene dada por los dos motores sincrónicos y la potencia de la carga pasiva S3.

Así se tiene:

$$S_{T3} = S_{M1} + S_{M2} + S3 = (18 - j8,718) + (8,79 + j4,75) = 26,79 - j3,968 MVA$$

$$S_{T3} = \sqrt{26,79^2 + 3,968^2} = 27,08 \, MVA$$

Por tanto se selecciona el transformar T3 con una potencia nominal de 30 MVA.

En relación con el trasformador T2, la potencia viene dada directamente por el generador.

Así se tiene:

$$S_{T2} = G = (45 + j21, 79) = \sqrt{45^2 + 21,792^2} = 49,998 \text{ MVA}$$

Por tanto se selecciona el transformar T2 con una potencia nominal de 50 MVA.

1.3.3.4. Transformador N°1

En relación con el trasformador T1, la potencia viene dada por los dos motores sincrónicos y la potencia de las cargas pasivas S1, S2 y S3.

Así se tiene:

$$\begin{split} S_{T1} &= S_1 + S_2 + S_1 + M_{S1} + M_{S1} = MVA \\ S_{T1} &= (17,20 + J10,20) + (8,70 + J4,93) + (8,79 + J4,75) + (9 - J4,35) + (9 - J4,35) = \\ S_{T1} &= 52,69 + 11,18J \text{ MVA} \\ S_{T1} &= \sqrt{52,69^2 + 11,18^2} = 53,863 \text{ MVA} \end{split}$$

Por tanto se selecciona el transformar T1 con una potencia nominal de 60 MVA.

Finalmente la Tabla 1.3 resume los datos más relevantes de cada uno de los cuatro transformadores

	Potencias		Potencia	Z(PU)	X/R
Transformador	demandadas	Resultado	transformador		
1	S1+S2+S3+MS1+MS2	53.86 4 11,95	60 MVA	0,1475	32
2	Generador	50 ∡ 25,8400	50 MVA	0,0900	31
3	MS1+MS2+S3	27,09 4 -8,420	30 MVA	0,0900	24
4	MS1+MS2	20 4 -25,8400	20 MVA	0,0675	22

Tabla 1.3: Resumen datos transformadores

Cabe destacar que los parámetros de X y X/R de cada transformador, se han obtenido de tablas normalizadas. Así, para las reactancias se utiliza la tabla "Valores normalizados de reactancia para

transformadores de dos devanados " y la relación X/R de tabla "Transformadores" ambas adjuntas en Anexo A.

Así, con referencia a los cálculos descritos en la Tabla 1.3, en la figura 1.4 se presenta el diagrama unilineal definitivo con las potencias de los transformadores.

Figura 1.4: Diagrama unilineal definitivo de la red eléctrica en estudio

Universidad del Bío-Bío. Sistema de Bibliotecas - Chile

CAPÍTULO 2: CÁLCULO DE PARÁMETROS DE LOS COMPONENTES DE LA RED ELÉCTRICA Y REGULACIÓN DE TENSIÓN

Capítulo 2: Cálculo de parámetros de la red eléctrica y regulación de tensión

2.1. Fundamento

El presente capítulo tiene como objetivo realizar el cálculo de parámetros de la red eléctrica donde se modela numéricamente cada uno de los elementos del SEP, como lo son las líneas, transformadores, generador y motores sincrónicos, con su respectiva impedancia, la cual es llevada a un valor en por unidad (PU), realizando cambio de base donde se utiliza una potencia de 100MVA.

En conjunto con el cálculo de parámetros de los componentes de la red eléctrica, se realiza el cálculo de regulación de tensión en barras.

2.2. Consideraciones

En el caso de las líneas de transmisión, se realiza el cálculo mecánico, posteriormente se definen los parámetros de las líneas.

2.3. Dimensionamiento de las líneas

Con referencia al diagrama unilineal de la figura 1.4 la LT1 es una línea aérea en 154 kV encargada de transmitir la energía eléctrica desde el punto de empalme (SIC) hasta la Subestación N°1, y posee un conductor por fase.

La LT2 es una línea de distribución en 110 kV, encargada de transmitir energía eléctrica desde la subestación N°1 a la subestación N°2, y posee un conductor por fase.

La LT3 es una línea de distribución aérea en 23 kV, encargada de distribuir energía eléctrica desde la subestación N°3 a la subestación N°3. Esta línea posee dos conductores por fase.

El dimensionamiento de una línea de transmisión se sustenta en considerar que la capacidad térmica asociada al tamaño de los conductores, debe ser mayor a la corriente nominal definida por la potencia transferida.

Por otro lado, para el cálculo de los parámetros de los conductores, se utiliza la tabla del proveedor CABEL con cables de aluminio desnudo, que se incluyen en el Anexo B.

En tal sentido, al tratarse de líneas de longitud menor a los 80 kilómetros, es posible despreciar el efecto capacitivo.

2.3.1. Cálculo de corrientes nominales

Conocida la potencia que circula por la línea, es posible calcular la corriente nominal que debe soportar. Así, la corriente nominal viene dada por:

$$I_{nom} = \frac{S}{\sqrt{3} * V_{nom}}$$

Donde I_{nom} es la corriente nominal en amperes, S es la Potencia aparente en (MVA) y V_{nom} es la tensión nominal en (kV).

Con referencia al estudio de cargas descrito en el capítulo anterior, en la Tabla 2.1 se resumen las características eléctricas y topología de cada línea.

Línea	S Diseño MVA	Tensión Nominal KV	Longitud km	Conductores por fase	Tamaño conductor (mm²)	Tipo de cableado
LT1	90	154	5,25	1	107,20	6/1
LT2	40	110	25,2	1	53,48	6/1
LT3	30	23	2,10	2	157,20	18/1

Tabla 2.1 Características eléctricas de las líneas

Con referencia a la Tabla 2.1, el tamaño del conductor se ha determinado empleando las tablas "Cabel" para conductores de aluminio del Anexo B.

2.3.2. Fundamento teórico cálculo mecánico de las líneas

Para la obtención de parámetros de las líneas de transmisión y distribución es necesario considerar los aspectos eléctricos y mecánicos a los cuales se ven sometidas las líneas. Para los propósitos de cálculo se disponen 2 aplicaciones, en la primera aplicación las líneas se ubican en la zona 1 (artículo 112.1 del reglamento de corrientes fuertes), y para la segunda aplicación según el artículo 106.1 a una temperatura de 30°C.

2.3.2.1. Primera aplicación (Condición crítica)

Considerando la ubicación de las líneas de transmisión en la Zona 1, NSEG 5. En.71. Reglamento de Instalaciones Eléctricas de Corrientes Fuertes (artículo 113.2) es posible definir las peores condiciones ambientales a las que se verá sometido el conductor. Para la aplicación crítica, la tensión mecánica a la que queda sometido el conductor no debe sobrepasar el 50 % de su tensión de ruptura, esta es:

 $F_{a max} = F \cdot 0.5 \ (kg).$

Dónde Fa_{max} es la tensión máxima en kg, y F es la tensión de ruptura en Kg del conductor.

Evaluando la condición crítica, se establecen distintos factores climáticos. Así, con referencia a la figura 2.1 la fuerza ejercida por el viento viene dada por.

$h = 0,01 \cdot p \cdot D \quad (kg/mts)$

Dónde: h=fuerza horizontal ejercida por la presión del viento kg/mts, p=presión de viento en (gr/cm)², D= Diámetro del conductor en mm.

Figura 2.1 Fuerza ejercida por el viento

Además de la fuerza ejercida por el viento, es necesario considerar el peso del propio conductor y el hielo que se adosa en todo su perímetro, resultando un peso total del conductor (V). Así el peso del hielo sobre el conductor viene dado por:

Vh=0,000717 $\cdot [(D + 2r)^2 - D^2]$

Donde Vh=peso del hielo en kg/mts, D=Diámetro del conductos en m, r=espesor del hielo en mm.

Por otro lado, con referencia a la figura 2.2 la fuerza resultante del conductor queda definida por:

$$g = \sqrt{V^2 + h^2} \quad (mts)$$

$$g = \sqrt{[V_c + V_h]^2 + h^2} \quad (kg/mts)$$

Donde g es igual a la fuerza resultante en (kg/mts).

Figura 2.2: Fuerza de apoyo

Considerando la relación normalizada, respecto del vano de la línea, es posible definir la relación, esto es:

$$\frac{Fa}{S * g} = \frac{Y}{S}$$

Dónde: Fa max=Tensión máxima en kg, S=Separación de las torres mts (Vano) g= Fuerza resultante kg/mts, Y/S=factor para ingresar a tablas "RELACION FLECHA VANO". Por otro lado al considerar el largo de la línea se tiene:

$$\frac{l1}{S} = \frac{l}{S} * \left(\frac{1}{1 + \frac{Fa}{s * Me}}\right) * (1 + \alpha * \Delta^{\circ}T)$$

Dónde: l1/S es el valor unitario de L, sin carga y con un cambio de temperatura $\Delta^{\circ}T$, S es la separación entre postes (vano),Fa=Tensión máxima de ruptura en Kg, s es igual a la sección del conductor en mm², Me es igual al módulo de elasticidad, $\Delta^{\circ}T$ =Delta de temperatura mínima a la máxima.

2.3.2.2. Segunda aplicación (flecha a 30°C)

Con referencia a la normativa vigente, es necesario evaluar la flecha a 30° C (artículo 106.1 del reglamento de corrientes fuertes) la que afecta directamente al cálculo de separación mínima entre conductores.

Al igual que la primera aplicación, junto con las expresiones descritas anteriormente, es necesario evaluar la tensión máxima de ruptura en Kg (Fa), definida por:

Fa

S * g

Donde Fa es la fuerza en los apoyos en Kg, S es la separación de las estructuras, y "g" es la carga resultante en Kg/Mts.

Por otro lado, al considerar expresiones normalizadas se define la relación L/S dada por:

$$\frac{l2}{S} = \frac{l1}{S} * \left(1 + \frac{Fa}{S * Me}\right)$$

Donde l1/S = largo sin carga, l2/S = largo con carga, Fa= carga en Kg, s=Sección del conductor en mm²,Me=Modulo de elasticidad.

2.3.2.3. Soporte mecánico de las líneas

La separación que existe entre las estructuras, recibe el nombre de Vano y se simboliza con una letra S, según se presenta en la Figura 2.3.

Figura 2.3: Separación entre estructuras "S"

En general los vanos varían entre los 200 - 450 metros, razón por la cual para el caso de las líneas en estudio se consideran los siguientes criterios:

a.- La línea LT1 tendrá un vano de 350 metros con una longitud de 5,25 kilómetros, por lo que se tendrán 16 estructuras metálicas (torres).

b.- La línea LT2 tendrá un vano de 350 metros con una longitud de 25,2 kilómetros, por lo que se tendrán
73 estructuras metálicas (torres).

c.- La línea LT3 tendrá un vano de 350 metros con una longitud de 2,1 kilómetros, por lo que se tendrán 7 estructuras metálicas (torres).

2.3.3. Desarrollo cálculo mecánico de las líneas

2.3.3.1. Cálculo mecánico de la línea 1

Con relación a la información de la línea LT1 descrita en la Tabla 2.1, los datos técnicos más relevantes de la línea se resumen en la Tabla 2.2

Conductor a utilizar	Penguin 4/0 ,cableado 6/1
Sección	107,2 mm ²
Número de hebras	6 Aluminio/1 acero
Diámetro(D)	14,31 mm
Tensión de ruptura	3787 Kg
Peso propio	0,433 Kg/mts
Módulo de elasticidad	8400 kg/mm2
Coeficiente de dilatación lineal	18,9* 10^{−6} 1∕°C
Corriente nominal	337,42 A
Vano	350 mts

Tabla	2.2:	datos	de l	a línea	LT1
		0.0.000			

2.3.3.1.1. Primera aplicación (aplicación crítica)

La tensión mecánica incluyendo el resguardo del 50% de la tensión de ruptura, viene dada por:

Fa_{max} = F * 0,5 (Kg) = 3787 * 0,5 = 1893,5 (Kg)

Una vez obtenida la fuerza al 50% se procede a determinar los parámetros del conductor, considerando las siguientes condiciones climáticas.

Temperatura (t): - 10°C.

Espesor del hielo (r): 10 mm.

Presión del viento (p): 2 gr/ (cm)²

Con estas tres magnitudes físicas t, r y p el cálculo mecánico simula las condiciones meteorológicas adversas . Así la fuerza ejercida por el viento resulta ser:

h = 0, 01 * p * D (Kg/Mts) = 0, 01 * 2 * 14, 31 (Kg/Mts) = 0, 2862 (Kg/Mts)

Obtenida la fuerza ejercida por el viento, el peso del hielo sobre el conductor viene dado por:

 $Vh = 0,000717 \cdot [(D + 2r)^2 - D^2] Kg/Mts$ Vh = 0,000717 * [(14,31 + 2 * 10)² - 14,31²] = 0,6972KG/Mts.

Una vez obtenidos estos 2 valores, más los datos obtenidos del catálogo CABEL, se procede a calcular (g) que es la fuerza resultante del conductor, esto es:

 $g = \sqrt{V^2 + h^2} \quad (\text{Kg}/Mts) = \sqrt{[V_c + V_h]^2 + h^2} \quad (\text{Kg}/Mts)$ $g = \sqrt{((0.433 + 0.6972)^2 + 0.2862^2)} = 1.1658 \quad (\text{Kg}/Mts)$

Una vez obtenida la carga resultante (g) se utilizan tablas patrón normalizadas que relacionan los factores V/S, Y/S, f/S y l/S ver tabla en Anexo C.

Así, el factor Y/S viene dado por:

$$\frac{Y}{S} = \frac{Fa \ max}{S \ * \ g} = \frac{1893,5}{350 \ * \ 1,1658} = 4,6405 \ \text{PU}$$

Calculado el factor "Y/S" (Altura del modelo matemático) y al no encontrarse de forma exacta en la tabla del anexo C ya mencionada, se procede a realizar la interpolación para obtener el valor exacto de f/S y I/S.

Con referencia a las relaciones normalizadas en la Tabla 2.3 se presentan los datos que permiten realizar la interpolación.

Y/S	I/S
4,7882 (Tabla)	1,001839(Tabla)
4,6405 (Obtenido)	L/S (A obtener)
4,5730 (Tabla)	1,002017(Tabla)

Tabla 2.3: datos para la interpolación de I/S e Y/S

Así, para los valores Y/S se tiene:

4,7882 - 4,6405 = 0,1477

4,7882 - 4,5730 = 0,2152

Por otro lado, al considerar la relación I/S, se tiene:

 $1,002017 - 1,001839 = 1,78 * 10^{-4}$

Una vez obtenida las diferencias Y/S y L/S al emplear interpolación se tiene:

$$\frac{l1}{S} = \frac{0,1477 * 1,78 * 10^{-4}}{0,2152} + 1,001839 = 1,001961$$

Este valor se encuentra con sobrecarga por tanto se procede a eliminar mediante la fórmula anteriormente descrita, ademas se realiza inmediatamente el cambio de temperatura.

$$\frac{l2}{S} = \frac{l1}{S} * \left(\frac{1}{1 + \frac{Fa}{S * ME}}\right) * (1 + \alpha * \Delta^{\circ}T)$$
$$\frac{l2}{S} = 1,001961 * \left(\frac{1}{1 + \frac{1893,5}{107,2 * 8400}}\right) * (1 + 18,9 * 10^{-6} * 40) = 1,00061$$

2.3.3.1.2. Segunda aplicación (Flecha a 30°C)

En esta aplicación no se considera el peso del hielo (Vh) y tampoco la presión del viento (h) según normativa en el artículo 106 con una flecha a 30°C y sin sobrecarga.

Para obtener (g) se considera el peso del conductor, el cual según la Tabla 2,2 es de 0,433 Kg/Mts. Así la fuerza en los apoyos resulta ser.

$$\frac{F}{S * g} = 6$$

El valor (6) se mantendrá constante durante el desarrollo, este es obtenido de gráfico adjunto en anexo C.

Despejando para obtener la fuerza en los apoyos.

F = 6 * *S* * *g* = 6*350*0,433 = 909,3 Kg

Una vez obtenida la fuerza en los apoyos procedemos a obtener I/S y f/S en esta segunda aplicación con valores obtenidos en la primera aplicación.

Para poder obtener el nuevo L/S sin sobre carga se aplica la siguiente formula.

*l*1/S=1,00061 de la primera aplicación

$$\frac{l1}{S} = \frac{l}{S} * \left(1 + \frac{Fa}{Seccion * ME}\right) = 1,00061 * \left(1 + \frac{909,3}{107,2 * 8400}\right) = 1,00162 mts.$$

Empleando la información normalizada presentada en el anexo C, en la tabla 2.4 se presentan los valores obtenidos del gráfico largo/flecha del conductor.

Tabla 2.4: valores largo/flecha del conductor

f/S	I/S
0,018	1,0015

Una vez obtenido estos valores se logra dar término al procedimiento del cálculo para obtener el largo y la flecha en esta segunda aplicación.

Para obtener los parámetros del conductor se necesita sólo la flecha, que se calcula de la siguiente manera.

Flecha del conductor

Flecha = S * Factor f / S = 350 * 0,018 = 6,30 Mts

2.3.3.2. Cálculo mecánico de la línea 2

Con relación a la información de la línea LT2 descrita en la Tabla 2.1, los datos técnicos más relevantes de la línea se resumen en la Tabla 2.5

Tabla 2.5: datos de la línea LT2

Conductor a utilizar Raven 1/0	cableado de 6/1
--------------------------------	-----------------

Sección	53,48 [[mm]]^2
Número de hebras	6 Aluminio/1 acero
Diámetro(D)	10,11 mm
Tensión de ruptura	1985 Kg
Peso propio	0,216 Kg/mts
Módulo de elasticidad	8400 kg/mm2
Coeficiente de dilatación lineal	18,9*10 ^{−6} 1⁄°C
Corriente nominal	209,94
Vano	350 mts

2.3.3.2.1. Primera aplicación (aplicación crítica)

La tensión mecánica incluyendo el resguardo del 50% de la tensión de ruptura, viene dada por

$$F_{a m \acute{a} x} = F \cdot 0.5 (Kg) = 1985 \cdot 0.5 (Kg) = 992.5 (Kg)$$

Una vez obtenida la fuerza al 50% se procede a determinar los parámetros del conductor, considerando las siguientes condiciones climáticas.

Temperatura (t): -10°C

Espesor del hielo (r): 10 mm.

Presión del viento (p): 2 gr/ (cm)²

Con estas tres magnitudes físicas t, r y p el cálculo mecánico simula las condiciones meteorológicas adversas para los conductores. Así la fuerza ejercida por el viento resulta ser:

 $h = 0.01 \cdot p \cdot D$ (Kg/Mts) = 0.01 · 2 · 10.11 (Kg/Mts) = 0.2022 (Kg/Mts).

el peso del hielo sobre el conductor viene dado por:

 $Vh = 0,000717 \cdot [(D + 2r)^2 - D^2] Kg/Mts$ $Vh = 0,000717 * [(10,11 + 2 * 10)^2 - 10,11^2] KG/Mts. = 0,5767 Kg/Mts$

Una vez obtenidos estos 2 valores, más los datos obtenidos del catálogo CABEL, se procede a calcular (g) que es la fuerza resultante del conductor, esto es:

$$g = \sqrt{V^2 + h^2} \quad (Kg/Mts)$$

$$g = \sqrt{[V_c + V_h]^2 + h^2} \quad (Kg/Mts)$$

$$g = \sqrt{(0,216 + 0.5767)^2 + 0.2022^2} = 0.8822 \quad (Kg/Mts)$$

Una vez obtenida la carga resultante (g) se utilizan tablas patrón normalizadas que relacionan los factores V/S, Y/S, F/S y L/S ver tabla en Anexo C.

$$\frac{Y}{S} = \frac{Fa \ max}{S * g} = \frac{992,5}{350 * 0,8822} = 3,2144 \ \text{PU}$$

Una vez obtenido el factor "Y/S" (Altura del modelo matemático) y al no encontrarse de forma exacta en la tabla del anexo C ya mencionada, se procede a realizar la interpolación para obtener el valor exacto de f/S y I/S.

Con referencia a las relaciones normalizadas en la Tabla 2.6 se presentan los datos que permiten realizar la interpolación.

Y/S	I/S
3,3709 (Tabla)	1,003754(Tabla)
3,2144 (Obtenido)	L/S (A obtener)
2,9838 (Tabla) 1,004825(Tabla)	

Tabla 2.6: datos para la interpolación de I/S e Y/S

Así, para los valores Y/S se tiene:

3,3709 - 2,9838 = 0,3871

3,3709 - 3,2144 = 0,1565

Por otro lado, al considerar la relación L/S, entonces:

 $1,004825 - 1,003754 = 1,071 * 10^{-3}$

Una vez obtenida las diferencias Y/S y I/S al emplear interpolación se tiene:

$$\frac{l1}{S} = \frac{0,1565 * 1,071 * 10^{-3}}{0,3871} + 1,003754 = 1,004187$$

Este valor se encuentra con sobrecarga por tanto se procede a eliminar mediante la fórmula anteriormente descrita donde se realiza inmediatamente el cambio de temperatura.

$$\frac{l2}{S} = \frac{l1}{S} * \left(\frac{1}{1 + \frac{Fa}{S * ME}}\right) * (1 + \alpha * \Delta^{\circ}T)$$
$$\frac{l2}{S} = 1,004187 * \left(\frac{1}{1 + \frac{992,5}{53,48 * 8400}}\right) * (1 + 18,9 * 10^{-6} * 40) = 1,00273$$

2.3.3.2.2. Segunda aplicación (Flecha a 30°C)

En esta aplicación no se considera el peso del hielo (Vh) y tampoco la presión del viento (h) según normativa en el artículo 106 con una flecha a 30°C y sin sobrecarga.

Para obtener (g) se considera el peso del conductor, el cual según la Tabla 2,5 es de 0,216 Kg/Mts. Así la fuerza en los apoyos resulta ser.

$$\frac{F}{S*g} = 6$$

El valor (6) se mantendrá constante durante el desarrollo, este es obtenido de gráfico adjunto en anexo C.

Despejando para obtener la fuerza.

F = 6 * S * g = Kg 6 * 350 * 0,216 = 453,6 Kg

Una vez obtenida la fuerza en los apoyos procedemos a obtener I/S, f/S y Y/S en esta segunda aplicación con valores obtenidos en la primera aplicación.

Para poder obtener el nuevo I/S sin sobre carga se aplica la siguiente formula.

L1/S= 1,00273de la primera aplicación

$$\frac{l1}{S} = \frac{l}{S} * \left(1 + \frac{Fa}{Seccion * ME}\right) = 1,00273 * \left(1 + \frac{453,6}{53,48 * 8400}\right) = 1,003742$$

Empleando la información normalizada presentada en el anexo C, en la tabla 2.7 se presentan los valores obtenidos del gráfico largo/flecha del conductor.

Tabla 2.7: valores largo/flecha del conductor

f/S	I/S
0,0343	1,00338

Una vez obtenido estos valores se logra dar término al procedimiento del cálculo para obtener el largo y la flecha en esta segunda aplicación.

Para obtener los parámetros del conductor se necesita sólo la flecha que se calcula de la siguiente manera.

Flecha del conductor

Flecha = S * Factor f/S = 350 * 0,0343 = 12,005 Mts

2.3.3.3. Cálculo mecánico de la línea 3

Con relación a la información de la línea LT3 descrita en la Tabla 2.1, los datos técnicos más relevantes de la línea se resumen en la Tabla 2.8

Conductor a utilizar	Waxwing
Sección	158,2 [[mm]]^2
Número de hebras	18 Aluminio/1 acero
Diámetro(D)	15,46 mm
Tensión de ruptura	3122 Kg
Peso propio	0,433 Kg/mts
Módulo de elasticidad	7074 kg/mm2
Coeficiente de dilatación lineal	21,2*10 ⁻⁶ 1/°C
Corriente nominal	753,06/2=376,53 A
Vano	350 mts

Tabla 2.8: datos de la línea LT3

2.3.3.3.1. Primera aplicación (aplicación crítica)

La tensión mecánica incluyendo el resguardo del 50% de la tensión de ruptura, viene dada por:

$$F_{a m \acute{a} x} = F \cdot 0,5 (Kg) = 3122 \cdot 0,5 = 1561 (Kg)$$

Una vez obtenida la fuerza al 50% se procede a determinar los parámetros del conductor, considerando las siguientes condiciones climáticas.

Temperatura (t): - 10°C.

Espesor del hielo (r): 10 mm.

Presión del viento (p): 2 gr/ (cm)²

Con estas tres magnitudes físicas t, r y p el cálculo mecánico simula las condiciones meteorológicas adversas para los conductores. Así la fuerza ejercida por el viento resulta ser:

 $h = 0.01 \cdot p \cdot D$ (*Kg*/*Mts*) = 0.01 \cdot 2 \cdot 15.46 = 0.3092 (*Kg*/*Mts*).

Obtenida la fuerza ejercida por el viento, el peso del hielo sobre el conductor viene dado por:

 $Vh = 0,000717 \cdot [(D + 2r)^2 - D^2] Kg/Mts$ Vh = 0,000717 * [(15,46 + 2 * 10)² - 15,46²] = 0,7302 Kg/Mts

Una vez obtenidos estos 2 valores, más los datos obtenidos del catálogo CABEL, se procede a estimar (g) que es la carga resultante del conductor, esto es:

$$g = \sqrt{V^2 + h^2} \quad (Kg/Mts)$$

$$g = \sqrt{[V_c + V_h]^2 + h^2} \quad (Kg/Mts)$$

$$g = \sqrt{(0.433 + 0.7302)^2 + 0.3092^2} = 1,2035 \quad (Kg/Mts)$$

Una vez obtenida la carga resultante (g) se utilizan tablas patrón normalizadas que relacionan los factores V/S, Y/S, f/S y l/S ver tabla en Anexo C.

Así, el factor Y/S viene dado por:

$$\frac{Y}{S} = \frac{Fa \ max}{S * g} = \frac{1561}{350 * 1,2035} = 3,7058 \ \text{PU}$$

Calculado el factor "Y/S" (Altura del modelo matemático) y al no encontrarse de forma exacta en la tabla del anexo C ya mencionada, se procede a realizar la interpolación para obtener el valor exacto de f/S y LIS.

Con referencia a las relaciones normalizadas en la Tabla 2.9 se presentan los datos que permiten realizar la interpolación.

Y/S	I/S
3,7342 (Tabla)	1,003040(Tabla)
3,7058 (Obtenido)	L/S (A obtener)
3,6065 (Tabla) 1,003270(Tabla)	

Tabla 2.9: datos para la interpolación de I/S e Y/S

Así, para los valores se tiene:

3,7342 - 3,7058 = 0,0294

3,7342 - 3,6065 = 0,1277

Por otro lado, al considerar la relación I/S, entonces:

 $1,003270 - 1,003040 = 2,3 * 10^{-4}$

Una vez obtenida las diferencias Y/S y I/S al emplear interpolación se tiene:

$$\frac{l1}{S} = \frac{0,0294 * 2,3 * 10^{-4}}{0,1277} + 1,003040 = 1,003092$$

Este valor se encuentra con sobrecarga por tanto se procede a eliminar mediante la fórmula anteriormente descrita donde se realiza inmediatamente el cambio de temperatura.

$$\frac{l2}{S} = \frac{l1}{S} * \left(\frac{1}{1 + \frac{Fa}{S * ME}}\right) * (1 + \alpha * \Delta^{\circ}T)$$
$$\frac{l2}{S} = 1,003092 * \left(\frac{1}{1 + \frac{1561}{157,2 * 7074}}\right) * (1 + 21,2 * 10^{-6} * 40) = 1,00253$$

2.3.3.3.2. Segunda aplicación (Flecha a 30 °C)

En esta aplicación no se considera el peso del hielo (V_h) y tampoco la presión del viento (h) según normativa en el artículo 106 con una flecha a 30°C y sin sobrecarga.

Para obtener (g) se considera el peso del conductor, el cual según la Tabla 2,8 es de 0,433 Kg/Mts. Así la fuerza en los apoyos resulta ser.

$$\frac{F}{S*g} = 6$$

El valor (6) se mantendrá constante durante el desarrollo, este es obtenido de gráfico adjunto en anexo C.

Despejando para obtener la fuerza en los apoyos.

F = 6 * S * g = 6 * 350 * 0,433 = 909,3 Kg

Una vez obtenida la fuerza en los apoyos procedemos a obtener I/S, f/S y Y/S en esta segunda aplicación con valores obtenidos en la primera aplicación.

Para poder obtener el nuevo I/S sin sobre carga se aplica la siguiente formula.

*l*1/S=1,001961 de la primera aplicación

$$\frac{l1}{S} = \frac{l}{S} * \left(1 + \frac{Fa}{Seccion * ME}\right) = = 1,002535 * \left(1 + \frac{909,3}{157,2 * 7074}\right) = 1,003350$$

Empleando la información normalizada presentada en el anexo C, en la tabla 2.10 se presentan los valores obtenidos del gráfico largo/flecha del conductor.

Tabla 2.10: valores largo/flecha del conductor

f/S	I/S
0,0314	1,003270

Una vez obtenido estos valores se logra dar término al procedimiento del cálculo para obtener el largo y la flecha en esta segunda aplicación.

Para obtener los parámetros del conductor se necesita sólo la flecha que se calcula de la siguiente manera.

Flecha del conductor

Flecha = S * Factor f/S = 350 * 0,0314 = 10,99 Mts

2.3.4. Cálculo Parámetros de líneas.

Dentro de la obtención de los parámetros de las líneas se establecen 3 aspectos relevantes que hay que considerar antes de calcular las impedancias.

- Cantidad de cadenas de aisladores.
- Longitud de cadenas de aisladores.
- Separación conductores.

Estos aspectos serán utilizados para el cálculo de la distancia media geotérmica (DMG) y radio medio geométrico RMG) respectivamente.

2.3.4.1. Parámetros de la línea 1

De los datos obtenidos del cálculo mecánico se procede a la obtención de parámetros.

Cantidad cadena aisladores (154 * 1,075) * $\frac{1,7}{44,5}$ = 6,29 \cong 7 Aisladores

Longitud de la cadena = 7 * 14,6 = 102 cm \rightarrow 1,022 mt

Separación conductores = $(0,36 * \sqrt{6,30}) + (\frac{154}{130}) + (0,5 * 1,022) = 2,59 mt \cong 3 mts$

Parámetros de Secuencia

Con referencia a la distancia media geométrica DMG se consideran una separación de 3 metros de cada uno de los conductores y se obtiene el resultado.

$$DMG = \sqrt[3]{3 * 6 * 3} = 3,779 \ mt \rightarrow pies = \frac{3,779}{0,3048} = 12,4 \ Pies$$

El radio medio geométrico se obtiene directamente de la tabla del proveedor CABEL adjunta en anexo B.

$$RMG = 4,61 \ mm \ \rightarrow mt = 4,61 * 10^{-3} mt \ \rightarrow pies = \frac{4,61 * 10^{-3}}{0,3048} = 0,01512$$

Para obtener la reactancia de secuencia positiva es necesario emplear la siguiente formula.

$$Z_{L1} = Ra + J(Xa + Xd)$$

Se procede a calcular cada uno de sus incógnitas para luego remplazar.

$$Ra = 0.396 \ \Omega/km$$
 (Tabla Cabel anexo B)

$$Xa = 2\pi * 50 * 4,605 * 10^{-4} * \log\left(\frac{1}{0,1512}\right) = 0.2633 \ \Omega/km$$

$$Xd = 2\pi * 50 * 4,605 * 10^{-4} * \log(12,4) = 0,1581 \ \Omega/km$$

Reemplazando en cada una de las incógnitas:

$$Z_1 = R + j(Xa + Xd) = 0,396 + j (0,2633 + 0,1581) = 0,396 + j 0,4214 \Omega/km$$

Multiplicando por la longitud de la línea:

$$Z_1 = 0,396 + j 0,4214 * 5 km = 1,98 + j 2,107 \Omega$$

Para proceder al cambio de base se establece una potencia base de 100MVA y la impedancia base resulta ser:

$$Z_{Base} = \frac{(154 * 10^3)^2}{100 * 10^6} = 237,16$$

Para llevar los parámetros de secuencia positiva a por unidad (pu) se divide por la impedancia base, esto es:

$$Z_1 = \frac{1,98+j\,2,107}{237,16} = 0,008348 + j0,008884 \,(pu)$$

2.3.4.2. Parámetros de la línea 2

De los datos obtenidos del cálculo mecánico se procede a la obtención de parámetros.

Cantidad cadena aisladores (110 * 1,075) * $\frac{1,7}{44,5}$ = 4,51 \cong 5 Aisladores

Longitud de la cadena $= 5 * 14,6 = 73 \text{ cm} \rightarrow 0,73 \text{ mt}$

Separación conductores = $\left(0,36 * \sqrt{12,05}\right) + \left(\frac{110}{130}\right) + (0,5 * 0,73) = 2,46 \ mt \cong 3 \ mts$

Parámetros de Secuencia.

Con referencia a la distancia media geométrica DMG se consideran una separación de 3 metros de cada uno de los conductores y se obtiene el resultado.

$$DMG = \sqrt[3]{3*6*3} = 3,779 \ mt \rightarrow pies = \frac{3,779}{0,3048} = 12,4 \ pies$$

El radio medio geométrico se obtiene directamente de la tabla del proveedor CABEL adjunta en anexo.

$$RMG = 3,25 mm (Tabla Cabel anexo B) \rightarrow 3,25 * 10^{-3}mt = \frac{3,25 * 10^{-3}}{0,3048} = 0,01066 pies$$

Para obtener la reactancia de secuencia positiva es necesario emplear la siguiente formula.

$$Z_{L1} = Ra + J(Xa + Xd)$$

Se procede a calcular cada uno de sus incógnitas para luego remplazar.

 $Ra = 0.717 \ \Omega/km$ (Tabla Cabel anexo B)

$$Xa = 2\pi * 50 * 4,605 * 10^{-4} * \log\left(\frac{1}{0,01066}\right) = 0,2853 \ \Omega/km$$

$$Xd = 2\pi * 50 * 4,605 * 10^{-4} * \log(12,4) = 0,1581 \frac{\Omega}{km}$$

Reemplazando en cada una de las incógnitas:

$$Z_1 = R_a + j(Xa + Xd) = 0,717 + j(0,2853 + 0,1581) = 0,717 + j(0,4434 \Omega/Km)$$

Multiplicando por la longitud de la línea:

 $ZL1 = ZL2 = 0,717 + j 0,4434 * 25 Km = 17,925 + j 11,085 \Omega$

Para proceder al cambio de base se establece una potencia base de 100MVA y la impedancia base resulta ser:

$$Z_{Base} = \left(\frac{110 * 10^3}{100 * 10^6}\right)^2 = 121$$

Así, la impedancia de secuencia positiva a por unidad (pu) resulta ser:

$$Z_1 = \frac{17,925 + j\ 11,085}{121} = 0,1481 + j\ 0,0916\ (pu)$$

2.3.4.3. Parámetros de la línea 3

De los datos obtenidos del cálculo mecánico se procede a la obtención de parámetros.

Cantidad cadena aisladores =
$$(23 * 1,075) * \frac{1,7}{44,7} = 0,94 \cong = 2$$
 Aisladores

Longitud de la cadena = $C = 2 * 14,6 = 29,2 \text{ cm} \rightarrow 0,292 \text{ mt}$

Separación conductores =
$$(0,36 * \sqrt{10,99}) + (\frac{23}{130}) + (0,5 * 0,292) = 1,51 \cong 2,5 \text{ mt}$$

Parámetros de secuencia

Con referencia a la distancia media geométrica DMG se consideran una separación de 2,5 metros de cada uno de los conductores y se obtiene el resultado, considerando que esta línea consta de dos conductores por fase.

$$DMG_{AB} = \sqrt[4]{2,5 * 2,7 * 2,3 * 2,5} = 2,4959 mt$$
$$DMG_{AC} = \sqrt[4]{5 * 5,2 * 4,8 * 5} = 4,9979 mt$$

$$DMG_T = \sqrt[3]{2,4959 * 4,9979 * 2,4959} = 3,1459 \ mt \rightarrow \frac{3,1459}{0,3048} = 10,32 \ pies$$

El radio medio geométrico se obtiene directamente de la tabla del proveedor CABEL adjunta en anexo B, al tratarse de una línea de dos conductores por fase se realiza el procedimiento correspondiente.

$$RMG = 6 mm (Tabla \ Cabel \ anexo \ B) \to 0,006 \ mt \ \to \frac{0,006}{0,3048} = 0,01968 \ pies$$
$$RMG = \sqrt[2]{0,006 * 0,2} = 0,03464 \ Mts \ \to \frac{0,03464}{0,3048} = 0,1136 \ pies$$

Para obtener la reactancia de secuencia positiva es necesario emplear la siguiente formula.

$$ZL1 = Ra + J(Xa + Xd)$$

Se procede a calcular cada uno de sus incógnitas para luego remplazar.

$$Ra = 0,259 \ \Omega/km$$
 (Tabla Cabel anexo B)

$$Xa = 2\pi * 50 * 4,605 * 10^{-4} * \log\left(\frac{1}{0,01136}\right) = 0,1366 \ \Omega/km$$

$$Xd = 2\pi * 50 * 4,605 * 10^{-4} * \log(10,32) = 0,1466 \ \Omega/km$$

Reemplazando en cada una de la incógnitas

$$Z_1 = Ra + J(Xa + Xd) = 0,259 + j (0,1366 + 0,1466) = 0,259 + j 0,2832 \Omega/Km$$

Multiplicando por la longitud de la línea:

$$Z_1 = 0,259 + j 0,2832 * 2 Km = 0,518 + j0,566 \Omega$$

Para proceder al cambio de base se establece una potencia base de 100MVA y la impedancia base viene dada por:

$$Z_{Base} = \frac{(23 * 10^3)^2}{100 * 10^6} = 5,29$$

Así, la impedancia de secuencia positiva a por unidad (pu), resulta ser:

$$Z_1 = \frac{0,518 + j0,5664}{5,29} = 0,09792 + j 0,1070 (pu)$$

2.4. Estimación parámetros de los componentes del SEP

2.4.1. Estimación Parámetros SIC

Para la estimación de los parámetros del SIC se consideran datos típicos respecto al nivel de cortocircuito y la relación X/R, esto es:

COCI 3 Ø Barra cero 425 MVA y
$$\frac{X}{R} = 40$$

Así corriente la corriente viene dada por

$$I = \frac{425 * 10^6}{\sqrt{3} * 154 * 10^3} = 1593,37 \,A$$

Para obtener el Angulo se aplica la tangente a la menos 1 de la relación X/R.

$$Tang^{-1}(40) = 88,56^{\circ}$$

Una vez obtenido se procede a calcular el Z Sic considerando el Angulo de la relación X/R.

$$Z_{Sic} = \frac{V}{\sqrt{3} * Icc3\phi} = \frac{154 * 10^3}{\sqrt{3} * 1593,37 \neq -88,56} = 55,80 \neq 88,56 \,\Omega$$

En forma rectangular.

55,80 \neq 88,56 Ω = 1,4032 + *j*55,8223 Ω

Se procede a calcular Z base.

$$Z_B = \frac{(154 * 10^3)^2}{100 * 10^6} = 237,16$$

Así, la impedancia equivalente del SIC en por unidad resulta ser

$$Z_{Sic} = \frac{Z_{sic}}{Z_{base}} = \frac{1,4032 + j55,8223}{237,16} = 0,005910 + j 0,2351 \ (pu)$$

2.4.2. Estimación de Parámetros de los trasformadores

2.4.2.1. Estimación de Parámetros del Transformador 1

La potencia del transformador y el nivel de tensión son:

$$60 MVA - \frac{154}{110} kV$$

La tabla 4A-1 adjunta en anexo A establece una reactancia mínima y máxima del 11,5% y 18% respectivamente. Así, considerando una reactancia promedio:

$$X = \frac{11,5+18}{2} = 14,75\% / 100\% \to 0,1475 \ (pu)$$

Para obtener la relación X/R se utilizara la tabla 4A-1 adjunta en anexo A, esto permite despejar la resistencia, esto es:

$$\frac{X}{R} = 32 \to R = \frac{X}{32} = \frac{0.1475}{32} = 4.609 \times 10^{-3}$$

Por lo tanto:

$$Z_1 = R + jx = 0,004609 + J 0,1475$$
 (pu)

Realizado el cambio de base con una potencia base de 100 MVA, se tiene:

$$(0,04609 + j \ 0,1475) * \frac{100}{60} = 0,007681 + j \ 0,2485 \ (pu)$$

2.4.2.2. Estimación de Parámetros del Transformador 2

La potencia del transformador y el nivel de tensión son:

$$50 MVA - \frac{11}{110} kV$$

La tabla 4A-1 adjunta en anexo A establece una reactancia mínima y máxima del 8% y 12% respectivamente. Así, considerando una reactancia promedio:

$$X = \frac{8+12}{2} = 10\% / 100\% \to 0,1 \text{ (ú)}$$

Para obtener la relación X/R se utilizara la tabla 4A-1 adjunta en anexo A, esto permite despejar la resistencia, esto es:

$$\frac{X}{R} = 31 \rightarrow R = \frac{X}{31} = \frac{0.1}{31} = 3.225 \times 10^{-3}$$

Por lo tanto

$$Z_1 = R + jx = 0,003225 + J 0,1 (pu)$$

Realizado el cambio de base con una potencia base de 100 MVA, se tiene:

$$(0,003225 + j \ 0,1) * \frac{100}{50} = 0,00645 + j \ 0,2 \ (pu)$$

2.4.2.3. Estimación de Parámetros del Transformador 3

La potencia del transformador y el nivel de tensión son:

$$30 MVA - \frac{110}{23} kV$$

La tabla 4A-1 adjunta en anexo A establece una reactancia mínima y máxima del 8% y 12% respectivamente. Así, considerando una reactancia promedio:

$$X = \frac{8+12}{2} = 10\% / 100\% \to 0,1 \ (pu)$$

Para obtener la relación X/R se utilizara la tabla 4A-1 adjunta en anexo A, esto permite despejar la resistencia, esto es:

$$\frac{X}{R} = 24 \to R = \frac{X}{24} = \frac{0.1}{24} = 4.166 \times 10^{-3}$$

Por lo tanto:

$$Z_1 = R + jx = 0,004166 + J 0,1 (pu)$$

Realizado el cambio de base con una potencia base de 100 MVA, se tiene:

$$(0,04166 + j \ 0,1) * \frac{100}{30} = 0,01388 + j \ 0,3333 \ (pu)$$

2.4.2.4. Estimación de Parámetros del Transformador 4

La potencia del transformador y el nivel de tensión son:

$$20 MVA - \frac{23}{6,6} kV$$

La tabla 4A-1 adjunta en anexo A establece una reactancia mínima y máxima del 5,5% y 8% respectivamente. Así, considerando una reactancia promedio:

$$X = \frac{5,5+8}{2} = 6,75\%/100\% \rightarrow 0,0675 \ (pu)$$

Para obtener la relación X/R se utilizara la tabla 4A-1 adjunta en anexo A, esto permite despejar la resistencia, esto es:

$$\frac{X}{R} = 22 \rightarrow R = \frac{X}{22} = \frac{0.0675}{22} = 3.068 \times 10^{-3}$$

Por lo tanto:

$$Z_1 = R + jx = 0,003068 + J 0,0675 (pu)$$

Realizado el cambio de base con una potencia base de 100 MVA, se tiene:

 $(0,003068 + j \ 0,0675) * \frac{100}{20} = 0,01534 + j \ 0,3375 \ (pu)$

2.4.3. Estimación de Parámetros del Generador

Respecto al generador se utiliza la tabla 11.6 "Synchronous machine constants" adjunta en anexo D, donde se seleccionan los parámetros de reactancia, seleccionando un generador tipo turbina de 4 polos.

Potencies generador: 50 MVA – 11 kV

 $X^{"} = 14\%$ Reactancia subtransiente

X' = 23% Reactancia Transiente

 $X_d = 115\%$ Reactancia X_1 ; X_2 eje directo (reactancia secundaria + y-)

Las reactancias seleccionadas se encuentran en porcentaje, por tanto se dividen en 100% para pasar a por unidad. Además se dejan en base común de 100 MVA.

$$X'' = 0,14 * \frac{100}{50} = 0,28 (pu)$$
$$X' = 0,23 * \frac{100}{50} = 0,46 (pu)$$
$$X_{1-2} = 1,15 * \frac{100}{50} = 2,3 (pu)$$

Una vez obtenida la reactancia empleando la relación X/R De tabla "Equivalent System X/R Ratio at Typical Location (For Quick Aprroximations)" adjunta en anexo D es posible determinar la resistencia, esto es:

$$\frac{X''}{R} = 6,2 \to R = \frac{0,28}{6,2} = 0,04509 \ (pu)$$
$$\frac{X'}{R} = 10,2 \to R = \frac{0,46}{10,2} = 0,04509 \ (pu)$$
$$\frac{X_{1-2}}{R} = 51 \to R = \frac{23}{51} = 0,04509 \ (pu)$$

Finalmente expresamos las impedancias:

Impedancia de secuencia positiva.

$$Z_1 = R + JX = 0,04509 + J 2,3 (pu)$$

Impedancia Subtransiente.

$$Z'' = 0,00549 + J 0,28 (pu)$$

Impedancia transiente.

$$Z'' = 0,00549 + J 0,46(pu)$$

2.4.4. Estimación de parámetros de los motores sincrónicos

2.4.4.1. Estimación de Parámetros del motor MS1

Para obtener los parámetros del motor sincrónico se utiliza la tabla 11.6 "Synchronous machine constants" anexo D, donde con la potencia de 10 MVA – 6,6 KV, define los parámetros del motor, esto es:

$$X^{"} = 18\% = 0,18 (pu)$$

 $X' = 25\% = 0,25 (pu)$
 $X_{1-2} = 80\% = 0,8 (pu)$

Como las reactancias son seleccionadas con la potencia del motor, al realizar el cambio de base asignando una potencia base de 100MVA.

$$X'' = 0.18 * \frac{100}{10} = 1.8 (pu)$$
$$X' = 0.25 * \frac{100}{10} = 2.5 (pu)$$
$$X_{1-2} = 0.8 * \frac{100}{10} = 8 (pu)$$

De tabla 4A-2 adjunta en anexo A se obtiene la relación X/R para obtener la resistencia. Se consideran las reactancias de secuencia positiva, transiente y subtransiente.

Impedancia de secuencia positiva.

$$\frac{X_{1-2}}{R} = 47 \rightarrow R = \frac{X_{1-2}}{47} = \frac{8}{47} = 0,1702 \ (pu)$$
$$Z_{1-2} = 0,1702 + J \ 8(pu)$$

Impedancia subtransiente.

$$\frac{X''}{R} = 10,57 \to R = \frac{X''}{10,57} = \frac{1,8}{10,57} = 0,1702 \ (pu)$$

$$Z'' = 0,1702 + J \, 1,8(pu)$$

Impedancia transiente.

$$\frac{X'}{R} = 14,68 \to R = \frac{X'}{14,68} = \frac{2,5}{14,68} = 0,1702 \ (pu)$$

$$Z'' = 0,1702 + J 2,5(pu)$$

2.4.4.2. Estimación parámetro motor MS2

Para obtener los parámetros del motor sincrónico se utiliza la tabla 11.6 "Synchronous machine constants" anexo D, donde con la potencia de 10 MVA – 6,6 KV, define los parámetros del motor, esto es:

$$X^{"} = 35\% = 0,35 (pu)$$

 $X^{1} = 50\% = 0,5 (pu)$

$X_{1-2} = 110\% = 1,1 (pu)$

Como las reactancias son seleccionadas con la potencia del motor, al realizar el cambio de base asignando una potencia base de 100MVA.

$$X'' = 0.35 * \frac{100}{10} = 3.5 (pu)$$
$$X^{1} = 0.5 * \frac{100}{10} = 5 (pu)$$
$$X_{1-2} = 110 * \frac{100}{10} = 11 (pu)$$

De tabla 4A-2 adjunta en anexo A se obtiene la relación X/R para obtener la resistencia. Se consideran las reactancias de secuencia positiva, transiente y subtransiente.

Impedancia de secuencia positiva.

$$\frac{X_{r2}}{R} = 47 \rightarrow R = \frac{X_{1-2}}{47} = \frac{11}{47} = 0,23404 \ (pu)$$
$$Z_{1-2} = 0,23404 + j \ 11 \ (pu)$$

Impedancia Subtransiente.

$$\frac{X^{"}}{R} = 14,95 \rightarrow R = \frac{X^{"}}{14,95} = \frac{3,5}{14,95} = 0,23404(pu)$$

$$Z^{"} = 0,23404 + j 3,5 (pu)$$

Impedancia Transiente.

$$\frac{X^{"}}{R} = 21,36 \rightarrow R = \frac{X^{"}}{21,36} = \frac{5}{21,36} = 0,23404 \ (pu)$$

Z'' = 0,23404 + j 5 (pu)

2.5. Regulación de tensión

Para realizar el cálculo de regulaciones de tensión en Barras, se consideran los datos de tensiones reales propios del sistema al igual de lo establecido en el artículo 9.1 de la NSEG 5 E.n.7.1., el cual permite un margen de tensión de un ±7,5% respecto a la tensión nominal. Asimismo, el análisis se realiza desde la Barra B0 hacia la Barra B5, empleando el método de flujos de potencia activa y reactiva que circula por las líneas de transmisión en donde la impedancia de esta se relaciona directamente con la caída de tensión.

Cabe destacar que para cumplir con la regulación de tensión se cuenta con 3 métodos, a los cuales se puede recurrir dependiendo de las necesidades y configuraciones, los cuales son:

- Aumentar la sección de las líneas de transmisión.
- Manipular los TAPS de los transformadores.
- Instalar banco de condensadores lo más cercano a las cargas.

Así, en la tabla 2.12 se resumen las tensiones en las barras.
Barras	Tensión KV	Tensión Fija KV
Barra O	154	145,6
Barra 1	154	-
Barra 2	110	-
Barra 3	110	-
Barra 4	23	-
Barra 5	6,6	-

Tabla 2.12 Tensión en barras

Cabe destacar que para el cálculo de regulación de tensión, se evaluara como condición, una tensión de 145,6 KV en el punto de empalme, correspondiente a -5,45% de la tensión nominal.

Para el desarrollo del cálculo de regulación de tensión, es necesario conocer la potencia demandada por el SEP y la impedancia de las líneas.

Por otro lado las impedancias de las líneas en (PU) y en ohm se resumen en la tabla 2.14

Tabla 2.14 Impedancias de las líneas

Denominación	Impedancias (PU)	Impedancia base	Impedancia (ohm)
ZL1	0,008348+j0,008884	237,16	1,98+j2,107
ZL2	0,1481+j 0,0916	121	17,925+j11,085
ZL3	0,09792+j 0,1070	5,29	0,518+j0,5664

En tabla 2.15 se muestran las potencias de las cargas pasivas.

Tabla 2.15: Potencias cargas pasivas

Denominación	Potencia P+jQ MVA
SO	29,39+J5,97
S1	17,2+J10,2
S2	8,7+J4,93
S3	8,79+J4,75

Con referencia a los datos descritos en las tablas anteriores en la figura 2.5 se presenta el diagrama unilineal para el cálculo de regulación de tensión.

2.5.1. Cálculo regulación de tensión primer escenario.

Para el desarrollo de este cálculo se considera el escenario con el generador fuera de servicio. Para la regulación de tensión se aplica la siguiente formula.

(VB1 - VB2) * VB2 = R * P + X * Q

Dónde: VB1: Voltaje barra 1, VB2: Voltaje barra 2, R: Resistencia de la línea en ohm, P: Potencia activa que circula por la línea en MVA, X: Reactancia de la línea en ohm y Q: Potencia reactiva que circula por la línea MVA

Figura 2.5: SEP primer escenario, regulación de tensión

Para este desarrollo se considera en primera instancia que en barra O existe una tensión de 146,5 KV.

2.5.1.1. Barra 0

Cálculo de tensión máxima y mínima en la barra O según norma.

Tensión máxima = $154 + 7,5\% = 165,55 \ KV$

Tensión mínima = $154 - 7,5\% = 142,45 \ KV$

La tensión de 145,6 KV en barra 0 está dentro de norma.

2.5.1.2. Barra 1

Cálculo de tensión máxima y mínima en la barra 1 según norma.

Tensión máxima =154 + 7,5% = 165,55 KV

Tensión mínima =154 - 7,5% = 142,45 KV

Al encontraste LT1 entre barra 0 y barra 1 sumamos las potencias que circulan por la líneas.

SL1 = ST1 + S0 = MVA SL1 = (52,69 + j11,162) + (29,39 + j5,97) = MVASL1 = 82,08 + j17,132 MVA

Una vez obtenida la potencia que circula por LT1 y considerando la impedancia de 0, 3534+J 0,8616 (ohm) aplicamos la formula.

 $V_{B1} = (145.6 - V_{B1})V_{B1} = 1,98 * 82,08 + 2,107 * 17,132$ $V_{B1} = 144,22$ KV

% Regulacion = $\frac{154 - 144,22}{144,22} * 100\% = 6,78\%$ La tensión de 144,22 KV en barra 1 está dentro de norma.

2.5.1.3. Barra 2

Cálculo de tensión máxima y mínima en la barra 2 según norma.

Tensión máxima =110 + 7,5% = 118,25 KV

Tensión mínima = $110 - 7,5\% = 101,45 \ KV$

Para obtener la tensión en barra 2 pasamos por el transformador T1.

 $V_{B2} = V_{B1} * \frac{Tensión Segundario}{Tensión Primario} = KV$

$$V_{B2} = 144,22 \text{ KV} * \frac{110 \text{ KV}}{154 \text{ KV}} = 103,014 \text{ KV}$$

Si bien la tensión en barra 2 se encuentra dentro de norma, se recure a la segunda alternativa para mejorar la tensión en el lado secundario y utilizamos los TAPS del transformador de \pm 3%.

$$V_{B2} = 144,22 * \frac{110(1+0,03)}{154(1-0,03)} = 109,38 \, KV$$

 $\% Regulation = \frac{110 - 109,38}{109,38} * 100\% = -0,56\%$

La tensión de 109,38 KV en barra 2 está dentro de norma.

2.5.1.4. Barra 3

Cálculo de tensión máxima y mínima en la barra 3 según norma.

Tensión máxima =110 + 7,5% = 118,25 KV

Tensión mínima = $110 - 7,5\% = 101,45 \ KV$

Al encontraste LT2 entre barra 2 y barra 3 sumamos las potencias que circulan por la líneas.

SL2 = ST3 + S2 = MVA SL1 = (26,79 - j3,967) + (8,7 + j4,93) = MVASL1 = 35,49 + j0,963 MVA

Una vez obtenida la potencia que circula por LT2 y considerando la impedancia de 17,92+j 11,08 (ohm) aplicamos la formula.

 $V_{B1} = (109,38 - V_{B3})V_{B3} = 17,92 * 35,49 + 11,08 * 0,963$ $V_{B1} = 103,1 \text{ KV}$

 $\% Regulation = \frac{110 - 103,1}{103,1} * 100\% = 6,69\%$

La tensión de 103,1 KV en barra 3 está dentro de norma.

2.5.1.5. Barra 4

Cálculo de tensión máxima y mínima en la barra 4 según norma.

Tensión máxima = 23 + 7,5% = 24,725 KV

Tensión mínima = 23 - 7,5% = 21,275 KV

Para obtener la tensión en lado secundario, pasamos por el transformador T3.

$$V_{Sec} = V_{B3} * \frac{Tensión Secundario}{Tensión Primario} = KV$$

$$V_{B4} = 103,1 \text{ KV} * \frac{23 \text{ KV}}{110 \text{ KV}} = 21,551 \text{ KV}$$

Si bien la tensión en secundario del transformador T3 se encuentra dentro de norma, se recure a la segunda alternativa para mejorar la tensión en el lado secundario y utilizamos los TAPS del transformador de \pm 3%.

$$V_{B4} = 103,1 * \frac{23(1+0,03)}{110(1-0,03)} = 22,89 \, KV$$

$$\% Regulation = \frac{23 - 22,89}{22,89} * 100\% = 0,48\%$$

Si bien la tensión en el secundario del transformador T3 se encuentra dentro de la norma para llegar a la barra 4 pasamos por LT3 por lo tanto sumamos las potencias activa y reactiva que circulan por la línea.

$$SL3 = ST3 = MVA$$

 $SL1 = 26,79 - j3,967 MVA$

Una vez obtenida la potencia que circula por LT3 y considerando la impedancia de 0,518+j 0,566 (ohm) aplicamos la formula.

$$V_{B4} = (22,89 - V_{B4})V_{B4} = 0,518 * 26,79 + 0,566 * -3,967$$

 $V_{B4} = 22,37 \text{ KV}$

$$\% Regulation = \frac{23 - 22,37}{22,37} * 100\% = 2,81\%$$

La tensión de 22,37 KV en barra 4 está dentro de norma.

2.5.1.6. Barra 5

Cálculo de tensión máxima y mínima en la barra 5 según norma.

Tensión máxima = $6,6 + 7,5\% = 7,095 \ KV$

Tensión mínima = $6,6-7,5\% = 6,105 \ KV$

Para obtener la tensión en barra 5 pasamos por el transformador T4.

$$V_{B5} = 22,37 \text{ KV} * \frac{6,6 \text{ KV}}{23 \text{ KV}} = 6,41 \text{ KV}$$

Si bien la tensión en barra 5 se encuentra dentro de norma, se recure a la segunda alternativa para mejorar la tensión en el lado secundario y utilizamos los TAPS del transformador de \pm 3%.

$$V_{B5} = 22,37 * \frac{6,6(1+0,03)}{23(1-0,03)} = 6,81 \, KV$$

% Regulacion = $\frac{6,6-6,81}{6,81} * 100\% = -3,08\%$ La tensión de 6,81 KV en barra 5 está dentro de norma.

2.5.2. Cálculo regulación de tensión considerando el segundo escenario

En la figura 2.6 se muestra el SEP correspondiente al segundo escenario donde el generador suministra la energía a las subestaciones N°2 y N°3.

Figura 2.6: SEP segundo escenario, regulación de tensión

2.5.2.1. Barra 3

Cálculo de tensión máxima y mínima en la barra 3 según norma.

Tensión máxima = $110 + 7,5\% = 118,25 \ KV$

Tensión mínima = $110 - 7,5\% = 101,45 \, KV$

En la figura 2.6 se muestra el generador conectado a la barra mediante el transformador T2 por lo tanto la tensión en barra 3 resulta ser:

$$V_{B2} = 11 \text{ KV} * \frac{110 \text{ KV}}{11 \text{ KV}} = 110 \text{ KV}$$

La tensión de 110 KV en barra 3 está dentro de norma.

2.5.2.2. Barra 4

Cálculo de tensión máxima y mínima en la barra 4 según norma.

Tensión máxima = 23 + 7,5% = 24,725 KV

Tensión mínima = $23 - 7,5\% = 21,275 \ KV$

Para obtener la tensión en lado secundario, pasamos por el transformador T3.

$$V_{Sec} = 110 \text{ KV} * \frac{23 \text{ KV}}{110 \text{ KV}} = 23 \text{ KV}$$

Si bien la tensión en el secundario del transformador T3 se encuentra dentro de la norma para llegar a la barra 4 pasamos por LT3 por lo tanto sumamos las potencias activa y reactiva que circulan por la línea.

$$SL3 = ST4 + S3 = MVA$$

 $SL3 = (18 - j8,718) + (8,79 + j4,75) = MVA$
 $SL3 = 26,79 - j3,968 MVA$

Una vez obtenida la potencia que circula por LT3 y considerando la impedancia de 0,518+j 0,566 (ohm) aplicamos la formula.

$$V_{B4} = (23 - V_{B4})V_{B4} = 0,518 * 26,79 + 0,566 * -3,967$$

 $V_{B1} = 22,48 \text{ KV}$

$$\% Regulation = \frac{23 - 22,48}{22,48} * 100\% = 2,31\%$$

La tensión de 22,48 KV en barra 3 está dentro de norma.

2.5.2.3. Barra 5

Cálculo de tensión máxima y mínima en la barra 5 según norma.

Tensión máxima =6,6 + 7,5% = 7,095 KV

Tensión mínima = $6,6 - 7,5\% = 6,105 \ KV$

En la figura 2.8 se muestra el transformador T4 conectado entre barras por lo tanto la tensión en barra 5 será:

$$V_{B5} = 22,48 \text{ KV} * \frac{6,6 \text{ KV}}{23 \text{ KV}} = 6,45 \text{ KV}$$

Si bien la tensión en barra 5 se encuentra dentro de norma, se recure a la segunda alternativa para mejorar la tensión en el lado secundario y utilizamos los TAPS del transformador de \pm 3%.

$$V_{B5} = 22,48 * \frac{6,6(1+0,03)}{23(1-0,03)} = 6,84 \, KV$$

 $\% Regulation = \frac{6,6-6,84}{6,84} * 100\% = -3,5\%$

La tensión de 6,84 KV en barra 5 está dentro de norma.

Para el análisis de la regulación de tensión en la tabla 2.16 se muestra el resumen de las tensiones tanto para el primer escenario sin aporte del generador y el segundo escenario solo con el aporte del generador.

Barra	Tensión KV	Rango ±7,5% KV	Tensión Escenario 1 KV	Tensión Escenario 2 KV
Barra O	154	142,45-165,55	146,50	-
Barra 1	154	142,45-165,55	144,22	-
Barra 2	110	101,45-118,24	109,38	-
Barra 3	110	101,45-118,25	103,10	110
Barra 4	23	21,27-24,72	22,37	22,48
Barra 5	6,6	6,10-7,09	6,81	6,84

Cabe destacar que como resultado del cálculo en ambos escenarios satisface la norma.

Universidad del Bío-Bío. Sistema de Bibliotecas - Chile

CAPÍTULO 3: CÁLCULO DE CORTOCIRCUITOS FALLA MÁXIMA Y MÍNIMA

Capítulo 3: Cálculo de cortocircuito falla máxima

3.1. Fundamentos

El cálculo de cortocircuito trifásico, permite conocer las corrientes de falla necesarias para el dimensionamiento de interruptores y en estudio de coordinación de protecciones. En tal sentido a considerar magnitudes en por unidad, la corriente de cortocircuito trifásico viene dada por:

$$If(pu) = \frac{1}{Z_{TH}}$$

Así, en el cálculo de cortocircuito trifásico es necesario determinar la impedancia de secuencia positiva desde el punto de falla, designado por Z_{TH} .

Por otro lado, dado que este cálculo se utiliza posteriormente para el estudio de coordinación de protecciones, resulta de especial interés calcular los aportes a la corriente de cortocircuito, dado que estas magnitudes serán las que detectarán los relés del Sistema de Protecciones.

En el cálculo de cortocircuito se analizan los dos escenarios de la red eléctrica, esto es, el primer escenario con la presencia del SIC y el Generador, y el segundo escenario que considera solo el aporte del generador.

Considerando los cálculos de impedancias en por unidad de los diferentes componentes de la red eléctrica en estudio, en la tabla 3.1 se resumen los valores de impedancia en PU en base de 100 MVA Tabla 3.1: Parámetros de la Red Eléctrica en forma polar

Deseringián	Designasián	Impedancia (PU)			
Descripcion	Designation	R+j X"	R+ j X´	R+jX	
Alimentador 1	L1	-	-	0,01219 4 46,78°	
Alimentador 2	L2	-	-	0,1741 4 31,73°	
Alimentador 3	L3	-	-	0,1450 ∡ 47,53°	
Empalme	SIC	-	-	0,2351 ∡ 88,55°	
Transformador 1	T1	-	-	0,2486 4 88,22°	
Transformador 2	T2	-	-	0,2001 ∡ 88,15°	
Transformador 3	Т3	-	-	0,3335 ∡ j87,61°	
Transformador 4	T4	-	-	0,3378 4 87,39°	
Generador	G1	0,2836 ⊀ 80,85°	0,4622 ⋨ 84,40°	2,3004≰ 88,87°	
Motor Sincrónico 1	MS1	1,8008 484,59°	2,5057 4 86,10°	8,0018 ∡ 88,78°	
Motor Sincrónico 2	MS2	3,5007 ∡ 86,17°	5,005 4 87,32°	11,002<88,78°	

Considerando los parámetros de la tabla 3.1, en la figura 3.1 se presenta el diagrama de impedancia de secuencia positiva, identificando la ubicación de las fallas que serán evaluadas.

Figura 3.1: Diagrama de Impedancias en por unidad en base 100 MVA.

3.2. Cálculo de cortocircuito trifásico, falla máxima, para el escenario con presencia del SIC y el Generador

3.2.1. Cortocircuito 3ø en Barra -BO

Para el cálculo de cortocircuito en BO, con referencia al diagrama de impedancia de la figura 3.1, se realiza una reducción de impedancias, denominando al sector izquierdo de la falla como Z_A y el derecho como, Z_B tanto como Z_A y Z_B estarán compuestas de impedancias asociadas al sector que corresponden.

Así en la figura 3.2 se muestran las impedancias asociadas al cortocircuito en la BO, identificando las impedancias equivalentes, y los aportes a la falla I_{FA} e I_{FB} .

Figura 3.2: Diagrama de impedancias para falla 3ø en Barra-O

 $Z_A = Z_{SIC}$

$$Z_B = Z_{L1+}Z_{T1+} + Z_{L2+} + \left[\left((Z_{T2+} + Z_{G1} / / Z_{T3+} + Z_{L3+} Z_{T4}) + (Z_{M1} / / Z_{M2}) \right) \right]$$
$$Z_{EO} = Z_A / / Z_B$$

$$Z_{EQ} = 0.235 \pm 88.55^{\circ} / / 0.753 \pm 76.34^{\circ}) = 0.179 \pm 85.65^{\circ} (PU)$$

Luego la corriente de falla total en por unidad para la BO resulta ser:

$$I_{FT} = \frac{140^{\circ}}{Z_{EO}} = \frac{140^{\circ}}{0,179485,65^{\circ}} = 5,5584 - 85,65^{\circ}(\text{PU})$$

Al considerar los aportes a la falla, definidas por las magnitudes I_{FA} e I_{FB} , se tiene:

$$I_{FA} = \frac{140^{\circ}}{Z_{E0}} = \frac{140^{\circ}}{0.235488,55^{\circ}} = 4,2534 - 88,55^{\circ}(PU)$$

$$I_{FB} = \frac{140^{\circ}}{Z_B} = \frac{140^{\circ}}{0.753476.34^{\circ}} = 1.3274 - 76.34^{\circ} \text{ (PU)}$$

Una vez calculada la corriente de falla total (I_{FT}), los aportes corrientes de falla A (I_{FA}) y corriente de falla B (I_{FB}) en (PU), las corrientes en amperes resultan ser:

 $I_{FT} = Icc (PU) x I_B = 5,558 4 - 85,65^{\circ}(PU) x 374,9 (A) = 2,083 (kA)$

 $I_{FA} = Icc (PU) x I_B = 4,253 4 - 88,55^{\circ}(PU) x 374,9 (A) = 1,594 (KA)$

 $I_{FB} = Icc (PU) x I_B = 1,327 4 - 76,34^{\circ} (PU) x 374,9 (A) = 0,497 (kA)$

Con referencia a la falla FO, en la figura 3.3 se presenta el diagrama de la red eléctrica, analizada mediante el software ETAP, en donde se identifica la corriente de falla en la barra O y los aportes a la falla.

Del análisis comparativo es posible verificar la coincidencia entre los resultados de ambos métodos, tanto para la corriente de falla, como en las magnitudes de los aportes a la falla.

Figura 3.3: Análisis de falla FO mediante ETAP

3.2.2. Cortocircuito 3ø en Barra –B1

Para el cálculo de cortocircuito en B1, con referencia al diagrama de impedancia de la figura 3.1, se realiza una reducción de impedancias, denominando al sector izquierdo de la falla como Z_A y el derecho como, Z_B tanto como Z_A y Z_B estarán compuestas de impedancias asociadas al sector que corresponden.

Así en la figura 3.4 se muestran las impedancias asociadas al cortocircuito en la B1, identificando las impedancias equivalentes, y los aportes a la falla I_{FA} e I_{FB}

Figura 3.4: Diagrama de impedancias para falla 3ø en Barra-B1

 $Z_A = Z_{SIC} + Z_{L1}$ $Z_B = Z_{T1} + Z_{L2} + [(Z_{T2+}Z_{G+})/(Z_{T3+} + Z_{L3+} + Z_{T4+}) + (Z_{M1+} + Z_{M2+})]$ $Z_{EQ} = Z_A//Z_B$ $Z_{EQ} = 0,244 \pm 86,65^{\circ}//0,745 \pm 76,85^{\circ} (PU) = 0,184 \pm 84,22^{\circ} (PU)$

Luego la corriente de falla en por unidad para la Barra 1 resulta ser:

$$I_{FT} = \frac{140^{\circ}}{Z_{EO}} = \frac{140^{\circ}}{0,184484,22^{\circ}} = 5,4224 - 84,22^{\circ}(\text{PU})$$

Al considerar los aportes a la falla, definidas por las magnitudes I_{FA} e I_{FB} , se tiene:

$$I_{FA} = \frac{140^{\circ}}{ZA} = \frac{140^{\circ}}{0.244486,65^{\circ}} = 4,0934 - 86,64^{\circ}(PU)$$
$$I_{FB} = \frac{140^{\circ}}{ZB} = \frac{140^{\circ}}{0.745476,85^{\circ}} = 1,3414 - 76,85^{\circ}(PU)$$

Una vez calculada la corriente de falla total (I_{FT}), los aportes corrientes de falla A (I_{FA}) y corriente de falla B (I_{FB}) en (PU), las corrientes en amperes resultan ser:

Resultando para esta falla en barra uno, una corriente de:

 $I_{FT} = Icc (PU) x I_B = 5,422 \measuredangle - 84,22°x 374,9 (A) = 2,032 (KA)$ $I_{FA} = Icc (PU) x I_B = 4,093 \measuredangle - 86,64°x 374,9 (A) = 1,534 (KA)$ $I_{FB} = Icc (PU) x I_B = 1,341 \measuredangle - 76,85°x 374,9 (A) = 0,502 (KA)$

Con referencia a la falla F1, en la figura 3.5 se presenta el diagrama de la red eléctrica, analizada mediante el software ETAP, en donde se identifica la corriente de falla en la barra 1 y los aportes a la falla.

Figura 3.5: Análisis de falla F1 mediante ETAP

Del análisis comparativo es posible verificar la coincidencia entre los resultados de ambos métodos, tanto para la corriente de falla, como en las magnitudes de los aportes a la falla.

3.2.3. Cortocircuito 3ø en Barra –B2

Para el cálculo de cortocircuito en Barra – 2, con referencia al diagrama de impedancia de la figura 3.1, se realiza una reducción de impedancias, denominando al sector izquierdo de la falla como $Z_A \ y \ el$ derecho como, Z_B tanto como $Z_A \ y \ Z_B$ estarán compuestas de impedancias asociadas al sector que corresponden.

Así en la figura 3.2 se muestran las impedancias asociadas al cortocircuito en la barra 2, identificando las impedancias equivalentes, y los aportes a la falla I_{FA} e I_{FB}

Figura 3.6: Diagrama de impedancias para falla 3ø en Barra-2

 $Z_A = Z_{SIC} + ZL1 + ZT1$ $Z_B = Z_{L2} + [(Z_{T2} + Z_G)//(Z_{T3} + Z_{L3} + Z_{T4}) + (Z_{M1}//Z_{M2})]$ $Z_{EQ} = Z_A//Z_B$ $Z_{EQ} = 0.492 \pm 87.43^{\circ}//0.504 \pm 71.28^{\circ} (PU) = 0.251 \pm 79.44^{\circ} (PU)$

Luego la corriente de falla en por unidad para la Barra 2 resulta ser:

$$I_{FT} = \frac{140^{\circ}}{Z_{EQ}} = \frac{140^{\circ}}{0.251479.44^{\circ}} = 3.9744 - 79.44^{\circ}(\text{PU})$$

Al considerar los aportes a la falla, definidas por las magnitudes I_{FA} e I_{FB} , se tiene:

$$I_{FA} = \frac{1 \neq 0^{\circ}}{ZA} = \frac{1 \neq 0^{\circ}}{0.492 \neq 87.43^{\circ}} = 2.029 \neq -87.43^{\circ}(PU)$$
$$I_{FB} = \frac{1 \neq 0^{\circ}}{ZB} = \frac{1 \neq 0^{\circ}}{0.504 \neq 71.28^{\circ}} = 1.984 \neq -71.28^{\circ}(PU)$$

Una vez calculada la corriente de falla total (I_{FT}) , los aportes corrientes de falla A (I_{FA}) y corriente de falla B (I_{FB}) en (PU) las corrientes en amperes resultan ser:

$$I_{FT} = Icc (PU) x I_B = 3,974 \pm -79,44^{\circ} (PU) x 524,86 (A) = 2,085 (KA)$$
$$I_{FA} = Icc (PU) x I_B = 2,029 \pm -87,43^{\circ} (PU) x 524,86 (A) = 1,065KA)$$
$$I_{FB} = Icc (PU) x I_B = 1,984 \pm -71,28^{\circ} (PU) x 524,86 (A) = 1,041(KA)$$

Con referencia a la falla F2, en la figura 3.7 se presenta el diagrama de la red eléctrica, analizada mediante el software ETAP, en donde se identifica la corriente de falla en la barra 2 y los aportes a la falla.

Figura 3.7: Análisis de falla F2 mediante ETAP

Del análisis comparativo es posible verificar la coincidencia entre los resultados de ambos métodos, tanto para la corriente de falla, como en las magnitudes de los aportes a la falla.

3.2.4. Cortocircuito 3ø en Barra – B3

Para el cálculo de cortocircuito en Barra – 3, con referencia al diagrama de impedancia de la figura 3.1, se realiza una reducción de impedancias, denominando al sector izquierdo de la falla como $Z_A\,$ y el derecho como $Z_B\,y\,Z_C\,$ tanto como $Z_A\,$, $Z_B\,\,y\,\,Z_C\,$ estarán compuestas de impedancias asociadas al sector que corresponden.

Así en la figura 3.2 se muestran las impedancias asociadas al cortocircuito en la barra 3, identificando las impedancias equivalentes, y los aportes a la falla I_{FA} , I_{FB} e I_{FC}

Figura 3.8: Diagrama de impedancias para falla 3ø en Barra-3

$$Z_A = Z_{SIC} + Z_{L1} + Z_{T1} + Z_{L2}$$

 $Z_B = Z_{T2} + Z_{G1}$

$$Z_C = Z_{T3} + Z_{L3} + Z_{T4} + (Z_{M1}/Z_{M2})$$

$$Z_{EQ} = Z_A / / Z_B / / Z_C$$

 $Z_{EQ} = 0,605 \pm 73,69^{\circ} / / 0,480 \pm 88,56^{\circ} / / 1,972 \pm 85,56 = 0,237 \pm 82,41^{\circ} \text{ (PU)}$

Luego la corriente de falla en por unidad para la Barra 3 resulta ser:

$$I_{FT} = \frac{1 \measuredangle 0^{\circ}}{Z_{EO}} = \frac{1 \measuredangle 0^{\circ}}{0.237 \measuredangle 82.41^{\circ}} = 4.210 \measuredangle - 82.41^{\circ} (PU)$$

Al considerar los aportes a la falla, definidas por las magnitudes IFA, IFV e IFC, se tiene:

$$I_{FA} = \frac{1 \pm 0^{\circ}}{0,605 \pm 73,69^{\circ}} = 1,651 \pm -73,69^{\circ}(PU)$$
$$I_{FB} = \frac{1 \pm 0^{\circ}}{ZB} = \frac{1 \pm 0^{\circ}}{0,480 \pm 88,56^{\circ}} = 1,651 \pm -73,69^{\circ}(PU)$$

$$I_{FC} = \frac{140^{\circ}}{ZB} = \frac{140^{\circ}}{1,972485,56} = 0,5074 - 85,56^{\circ} (PU)$$

Una vez calculada la corriente de falla total (I_{FT}) , los aportes corrientes de falla A (I_{FA}) , corriente de falla B (I_{FB}) y corriente de falla C (I_{FC}) , en (PU), las corrientes en amperes resultan ser:

Resultando para esta falla en barra tres, una corriente de:

$$I_{FT} = Icc (PU) x I_B = 4,210 \pm -82,41^{\circ} (PU) x 524,86 (A) = 2,209 (KA)$$
$$I_{FA} = Icc (PU) x I_B = 1,651 \pm -73,69^{\circ} (PU) x 524,86 (A) = 0,866 (KA)$$
$$I_{FB} = Icc (PU) x I_B = 1,651 \pm -73,69^{\circ} (PU) x 524,86 (A) = 1,093 (KA)$$
$$I_{FC} = Icc (PU) x I_B = 0,507 \pm -85,56^{\circ} (PU) x 524,86 (A) = 0,266 (KA)$$

Con referencia a la falla F3, en la figura 3.9 se presenta el diagrama de la red eléctrica, analizada mediante el software ETAP, en donde se identifica la corriente de falla en la barra 3 y los aportes a la falla.

54

F3

Figura 3.9: Análisis de falla F3 mediante ETAP

Del análisis comparativo es posible verificar la coincidencia entre los resultados de ambos métodos, tanto para la corriente de falla, como en las magnitudes de los aportes a la falla.

3.2.5. Cortocircuito 3ø en Barra – B4

Para el cálculo de cortocircuito en Barra – 4, con referencia al diagrama de impedancia de la figura 3.1, se realiza una reducción de impedancias, denominando al sector izquierdo de la falla como $Z_A \ y \ el$ derecho como, Z_B tanto como $Z_A \ y \ Z_B$ estarán compuestas de impedancias asociadas al sector que corresponden.

Así en la figura 3.2 se muestran las impedancias asociadas al cortocircuito en la barra 4, identificando las impedancias equivalentes, y los aportes a la falla $I_{FA}\,$ e I_{FB}

Figura 3.10: Diagrama de impedancias para falla 3ø en Barra-4

$$Z_A = [(Z_{SIC} + Z_{L1} + Z_{T1} + Z_{L2}) / (Z_{T2} + Z_{G1})] + Z_{T3} + Z_{L3}$$
$$Z_B = [Z_{T4} + (Z_{M1} / / Z_{M2})]$$
$$Z_{EQ} = Z_A / / Z_B$$

 $Z_{EQ} = 0,723 \pm 78,07^{\circ}//1,526 \pm 88,47^{\circ}$ (*PU*) = 0,492 \pm 81,40^{\circ} (PU) Luego la corriente de falla en por unidad para la Barra 4 resulta ser:

$$I_{FT} = \frac{1 \pm 0^{\circ}}{Z_{EQ}} = \frac{1 \pm 0^{\circ}}{0.492 \pm 81.40^{\circ}} = 2.030 \pm -81.40^{\circ} (\text{PU})$$

Al considerar los aportes a la falla, definidas por las magnitudes I_{FA} e I_{FB} , se tiene:

$$I_{FA} = \frac{140^{\circ}}{ZA} = \frac{140^{\circ}}{0,723478,07^{\circ}} = 1,3824 - 78,07^{\circ}(PU)$$

$$I_{FB} = \frac{140^{\circ}}{ZB} = \frac{140^{\circ}}{1,526488,47^{\circ}} = 0,6554 - 88,47^{\circ} (PU)$$

Una vez calculada la corriente de falla total (I_{FT}), los aportes corrientes de falla A (I_{FA}) y corriente de falla B (I_{FB}) en (PU), las corrientes en amperes resultan ser: Resultando para esta falla en barra cuatro, una corriente de:

$$I_{FT} = Icc (PU) x I_B = 2,030 \measuredangle - 81,40^{\circ} (PU) x 2510,21 (A) = 5,097 (KA)$$
$$I_{FA} = Icc (PU) x I_B = 1,382 \measuredangle - 78,07^{\circ} (PU) x 2510,21 (A) = 3,481 (KA)$$
$$I_{FB} = Icc (PU) x I_B = 0,655 \measuredangle - 88,47^{\circ} (PU) x 2510,21 (A) = 1,644 (KA)$$

Con referencia a la falla F4, en la figura 3.3 se presenta el diagrama de la red eléctrica, analizada mediante el software ETAP, en donde se identifica la corriente de falla en la barra 4 y los aportes a la falla.

Figura 3.11: Análisis de falla F4 mediante ETAP

Del análisis comparativo es posible verificar la coincidencia entre los resultados de ambos métodos, tanto para la corriente de falla, como en las magnitudes de los aportes a la falla.}

3.2.6. Cortocircuito 3ø en Barra – B5

Para el cálculo de cortocircuito en Barra – 5, con referencia al diagrama de impedancia de la figura 3.1, se realiza una reducción de impedancias, denominando al sector izquierdo de la falla como $Z_A\,$ y el derecho como Z_B y $Z_C\,$ tanto como $Z_A\,$, $Z_B\,$ y $Z_C\,$ estarán compuestas de impedancias asociadas al sector que corresponden.

Así en la figura 3.2 se muestran las impedancias asociadas al cortocircuito en la barra 5, identificando las impedancias equivalentes, y los aportes a la falla I_{FA} , I_{FB} e I_{FC}

Figura 3.12: Diagrama de impedancias para falla 3ø en Barra-5

$$Z_A = [(Z_{SIC} + Z_{L1} + Z_{T1} + Z_{L2}) / (Z_{T2} + Z_{G1})] + Z_{T3} + Z_{L3} + Z_{T4}$$

$$Z_B = Z_{M1}$$

$$Z_C = Z_{M2}$$

$$Z_{EQ} = Z_A / / Z_B / / Z_C$$

$$Z_{EQ} = 1,057 \pm 81,03^{\circ} / / 1,8 \pm 88,78^{\circ} / / 3,5 \pm 88,78^{\circ} = 0,560 \pm 84,67^{\circ} (PU)$$

Luego la corriente de falla en por unidad para la Barra 5 resulta ser:

$$I_{FT} = \frac{1 \pm 0^{\circ}}{Z_{EQ}} = \frac{1 \pm 0^{\circ}}{0,560 \pm 84,67^{\circ}} = 1,785 \pm -84,67^{\circ}(\text{PU})$$

Al considerar los aportes a la falla, definidas por las magnitudes I_{FA} , $I_{FB}\,$ e I_{FC} , se tiene:

$$I_{FA} = \frac{140^{\circ}}{ZA} = \frac{140^{\circ}}{1,057481,03^{\circ}} = 0.9454 - 81,03^{\circ}(PU)$$
$$I_{FB} = \frac{140^{\circ}}{ZB} = \frac{140^{\circ}}{1,8488,78^{\circ}} = 0.5554 - 88,78^{\circ}(PU)$$

$$I_{FC} = \frac{140^{\circ}}{ZB} = \frac{140^{\circ}}{3,5488,78^{\circ}} = 0,2854 - 88,78^{\circ} \text{ (PU)}$$

Una vez calculada la corriente de falla total (I_{FT}) , los aportes corrientes de falla A (I_{FA}) , corriente de falla B (I_{FB}) y corriente de falla C (I_{FC}) , en (PU), las corrientes en amperes resultan ser:

 $I_{FT} = Icc (PU) x I_B = 1,785 \pm -84,67^{\circ}(PU) x 8747,73 (A) = 15,615 (KA)$ $I_{FA} = Icc (PU) x I_B = 0,945 \pm -81,03^{\circ}(PU) x 8747,73 (A) = 8,266 (KA)$ $I_{FB} = Icc (PU) x I_B = 0,555 \pm -88,78^{\circ} (PU) x 8747,73 (A) = 4,858(KA)$ $I_{FC} = Icc (PU) x I_B = 0,285 \pm -88,78^{\circ} (PU) x 8747,73 (A) = 2,498 (KA)$

Con referencia a la falla F5, en la figura 3.13 se presenta el diagrama de la red eléctrica, analizada mediante el software ETAP, en donde se identifica la corriente de falla en la barra 5 y los aportes a la falla.

Figura 3.13: Análisis de falla F5 mediante ETAP

Del análisis comparativo es posible verificar la coincidencia entre los resultados de ambos métodos, tanto para la corriente de falla, como en las magnitudes de los aportes a la falla.

3.2.7. Resumen de valores obtenidos

Luego de haber calculado las corrientes de cortocircuito y sus aportes a la falla se resumen en la siguiente tabla.

Derree	Tanaián (lu)()		lcc 3Φ		
Barras Tension (KV)		IFA (KA)	IFB (KA)	IFC (KA)	(kA)Total
Barra O	154	1,594	0,497	-	2,083
Barra 01	154	1,534	0,502	-	2,032
Barra 02	110	1,065	1,041	-	2,085
Barra 03	110	0,866	1,093	0,266	2,209
Barra 04	23	3,481	1,644	-	5,097
Barra 05	6,6	8,266	4,858	2,498	13,953

Tabla 3.2: Corrientes de cortocircuito y aportes a la falla máxima

Luego de haber obtenido el diagrama unilineal con los cortocircuito en el software ETAP, se procede a realizar la comparación de valores de cortocircuito de la red eléctrica en estudio, la cual se presenta en la Tabla 3.3

Tabla 3.3: Valores comparativos de corrientes de cortocircuito trifásico entre ETAP y Cálculo en detalle para falla máxima.

Darras	Tensión (KV)	Ісс 3Ф (КА)	Ісс 3Φ (КА)
Ddl1d5		ETAP	CALCULADO
Barra O	154	2,08	2,083
Barra 01	154	2,03	2,032
Barra 02	110	2,09	2,085
Barra 03	110	2,21	2,209
Barra 04	23	5,1	5,097
Barra 05	6,6	15,62	15,615

Con respecto a la Tabla 3.3 se verifica que los resultados mediante cálculo en detalle coinciden con los entregados por el software ETAP.

3.3. Cálculo de cortocircuito trifásico en las barras, Falla Máxima, suministro con generador

Realizado el cálculo de parámetros en por unidad, se confecciona el diagrama de impedancia que se presenta en la figura 3.14.

Figura 3.14: Diagrama de impedancias Generador alimentando SE N°2 y SE N°3

3.3.1. Cortocircuito 3ø en Barra – B3

Para el cálculo de cortocircuito en Barra – 3, con referencia al diagrama de impedancia de la figura 3.1, se realiza una reducción de impedancias, denominando al sector izquierdo de la falla como Z_A y el derecho como, Z_B tanto como Z_A y Z_B estarán compuestas de impedancias asociadas al sector que corresponden. Así en la figura 3.2 se muestran las impedancias asociadas al cortocircuito en la barra 3, identificando las impedancias equivalentes, y los aportes a la falla I_{FA} e I_{FB}

Figura 3.15: Diagrama de impedancias para falla 3ø en Barra-3

$$Z_B = Z_{T3} + Z_{L3} + Z_{T4} + (Z_{M1} / / Z_{M2})$$
$$Z_{E0} = Z_A / / Z_B$$

 $Z_A = Z_{T2} + Z_{G1}$

$$Z_{EO} = 0,480 \pm 88,56^{\circ} / / 1,972 \pm 85,56^{\circ} (PU) = 0,385 \pm 87,97^{\circ} (PU)$$

Luego la corriente de falla en por unidad para la Barra 3 resulta ser:

$$I_{FT} = \frac{1 \measuredangle 0^{\circ}}{Z_{EQ}} = \frac{1 \measuredangle 0^{\circ}}{0.385 \measuredangle 87,97^{\circ}} = 2,593 \measuredangle - 87,97^{\circ}(\text{PU})$$

Al considerar los aportes a la falla, definidas por las magnitudes I_{FA} e I_{FB} , se tiene:

$$I_{FA} = \frac{1 \pm 0^{\circ}}{ZA} = \frac{1 \pm 0^{\circ}}{0,480 \pm 88,56^{\circ}} = 2,082 \pm -88,56^{\circ}(PU)$$
$$I_{FB} = \frac{1 \pm 0^{\circ}}{ZB} = \frac{1 \pm 0^{\circ}}{1,972 \pm 85,56^{\circ}} = 0,507 - 85,56^{\circ}(PU)$$

Una vez calculada la corriente de falla total (I_{FT}) , los aportes corrientes de falla A (I_{FA}) y corriente de falla B (I_{FB}) en (PU), las corrientes en amperes resultan ser:

$$I_{FT} = Icc (PU) x I_B = 2,593 \measuredangle - 87,97^{\circ} (PU) x 524,86 (A) = 1,359 (KA)$$
$$I_{FA} = Icc (PU) x I_B = 2,082 \measuredangle - 88,56^{\circ} (PU) x 524,86 (A) = 1,093 (KA)$$
$$I_{FB} = Icc (PU) x I_B = 0,507 - 85,56^{\circ} (PU) x 524,86 (A) = 0,266 (KA)$$

Con referencia a la falla F3, en la figura 3.16 se presenta el diagrama de la red eléctrica, analizada mediante el software ETAP, en donde se identifica la corriente de falla en la barra 3 y los aportes a la falla.

Figura 3.16: Análisis de falla F3 mediante ETAP

3.3.2. Cortocircuito 3ø en Barra –B4

Para el cálculo de cortocircuito en Barra – 4, con referencia al diagrama de impedancia de la figura 3.1, se realiza una reducción de impedancias, denominando al sector izquierdo de la falla como Z_A y el derecho como, Z_B tanto como Z_A y Z_B estarán compuestas de impedancias asociadas al sector que corresponden. Así en la figura 3.2 se muestran las impedancias asociadas al cortocircuito en la barra 4, identificando las impedancias equivalentes, y los aportes a la falla I_{FA} e I_{FB}

Figura 3.17: Diagrama de impedancias para falla 3ø en Barra-4 $Z_A=Z_{T2}+Z_{G1}+Z_{T3}+Z_{L2}$

$$Z_B = Z_{T4} + (Z_{M1} / / Z_{M2})$$

$$Z_{EO} = Z_A / / Z_B$$

$$Z_{EO} = 0,928 \pm 82,33^{\circ}//1,526 \pm 88,47^{\circ} (PU) = 0,578 \pm 84,65^{\circ} (PU)$$

Luego la corriente de falla en por unidad para la Barra 4 resulta ser:

$$I_{FT} = \frac{1 \measuredangle 0^{\circ}}{Z_{EQ}} = \frac{1 \measuredangle 0^{\circ}}{0.578 \measuredangle 84,65^{\circ}} = 1,730 \measuredangle - 84,65^{\circ}(\text{PU})$$

Al considerar los aportes a la falla, definidas por las magnitudes I_{FA} e I_{FB} , se tiene:

$$I_{FA} = \frac{140^{\circ}}{ZA} = \frac{140^{\circ}}{0,928482,33^{\circ}} = 1,0774 - 82,33^{\circ}(PU)$$

$$I_{FB} = \frac{1 \measuredangle 0^{\circ}}{ZB} = \frac{1 \measuredangle 0^{\circ}}{1,526 \measuredangle 88,47^{\circ}} = 0,655 - 88,47^{\circ} (PU)$$

Una vez calculada la corriente de falla total (I_{FT}) , los aportes corrientes de falla A (I_{FA}) y corriente de falla B (I_{FB}) en (PU), las corrientes en amperes resultan ser:

 $I_{FT} = Icc (PU) x I_B = 1,730 \pm -84,65^{\circ}(PU) x 2510,21 (A) = 4,342 (KA)$ $I_{FA} = Icc (PU) x I_B = 1,077 \pm -82,33^{\circ}(PU) x 2510,21 (A) = 2,703 (KA)$ $I_{FB} = Icc (PU) x I_B = 0,655 - 88,47^{\circ} (PU) x 2510,21 (A) = 1,644 (KA)$ Con referencia a la falla F4, en la figura 3.18 se presenta el diagrama de la red eléctrica, analizada mediante el software ETAP, en donde se identifica la corriente de falla en la barra y los aportes a la falla.

Del análisis comparativo es posible verificar la coincidencia entre los resultados de ambos métodos, tanto para la corriente de falla, como en las magnitudes de los aportes a la falla.

Figura 3.18: Análisis de falla F4 mediante ETAP

3.3.3. Cortocircuito 3ø en Barra – B5

Para el cálculo de cortocircuito en Barra – 5, con referencia al diagrama de impedancia de la figura 3.1, se realiza una reducción de impedancias, denominando al sector izquierdo de la falla como Z_A y el derecho como Z_B y Z_C tanto como Z_A , Z_B y Z_C estarán compuestas de impedancias asociadas al sector que corresponden.

Así en la figura 3.19 se muestran las impedancias asociadas al cortocircuito en la barra 5, identificando las impedancias equivalentes, y los aportes a la falla I_{FA} , I_{FB} e I_{FC}

Figura 3.19: Diagrama de impedancias para falla 3ø en Barra-5

$$Z_{A} = Z_{T2} + Z_{G1} + Z_{T3} + Z_{L2} + Z_{T4}$$

$$Z_{B} = Z_{M1}$$

$$Z_{C} = Z_{M2}$$

$$Z_{EQ} = Z_{A} / / Z_{B} / / Z_{C}$$

$$Z_{EQ} = 1,265 \pm 83,68^{\circ} / (1,8 \pm 88,78^{\circ} / (3,5 \pm 88,78^{\circ} = 0,613 \pm 86,3^{\circ} (PU))$$

Luego la corriente de falla en por unidad para la Barra 5 resulta ser:

$$I_{FT} = \frac{140^{\circ}}{Z_{EQ}} = \frac{140^{\circ}}{0.613486.3^{\circ}} = 1.6314 - 86.3^{\circ}(\text{PU})$$

Al considerar los aportes a la falla, definidas por las magnitudes IFA, IFB e IFC, se tiene:

$$I_{FA} = \frac{1 \neq 0^{\circ}}{ZA} = \frac{1 \neq 0^{\circ}}{1,265 \neq 83,68^{\circ}} = 0,790 \neq -83,68^{\circ}(PU)$$
$$I_{FB} = \frac{1 \neq 0^{\circ}}{ZB} = \frac{1 \neq 0^{\circ}}{1,8 \neq 88,78^{\circ}} = 0,555 \neq -88,78^{\circ} \text{ (PU)}$$
$$I_{FC} = \frac{1 \neq 0^{\circ}}{ZB} = \frac{1 \neq 0^{\circ}}{3,5 \neq 88,78^{\circ}} = 0,285 \neq -88,78^{\circ} \text{ (PU)}$$

Una vez calculada la corriente de falla total (I_{FT}) , los aportes corrientes de falla A (I_{FA}) , corriente de falla B (I_{FB}) y corriente de falla C (I_{FC}) , en (PU), las corrientes en amperes resultan ser:

$$I_{FT} = Icc (PU) x I_B = 1,631 \pm -86,3^{\circ}(PU) x 8747,73 (A) = 14,270 (KA)$$
$$I_{FA} = Icc (PU) x I_B = 0,790 \pm -83,68^{\circ}(PU) x 8747,73 (A) = 6,910 (KA)$$
$$I_{FB} = Icc (PU) x I_B = 0,555 \pm -88,78^{\circ} (PU) x 8747,73 (A) = 4,854 (KA)$$
$$I_{FC} = Icc (PU) x I_B = 0,285 \pm -88,78^{\circ} (PU) x 8747,73 (A) = 2,498 (KA)$$

Con referencia a la falla F5, en la figura 3.20 se presenta el diagrama de la red eléctrica, analizada mediante el software ETAP, en donde se identifica la corriente de falla en la barra 5 y los aportes a la falla.

Figura 3.20: Análisis de falla F5 mediante ETAP

Del análisis comparativo es posible verificar la coincidencia entre los resultados de ambos métodos, tanto para la corriente de falla, como en las magnitudes de los aportes a la falla.

3.3.4. Resumen de datos obtenidos

Luego de haber calculado las corrientes de cortocircuito y sus aportes a la falla se resumen en la siguiente tabla.

Dorros	Tancián (14)()	Aportes			lcc 3Φ
Barras Tension (KV)		IFA (KA)	IFB (KA)	IFC (KA)	(kA)Total
Barra 03	110	1,093	0,266	-	1,359
Barra 04	23	2,703	1,644	-	4,342
Barra 05	6,6	6,910	4,854	2,498	12,562

Tabla 3.4: Corrientes de cortocircuito máxima y aportes a la falla

Luego de haber obtenido el diagrama unilineal con los cortocircuito en el software ETAP, se procede a realizar la comparación de valores de cortocircuito de la red eléctrica en estudio, la cual se presenta en la Tabla 3.5

Barras	Tensión (KV)	Ісс 3Φ (КА)	Ісс 3Φ (КА)
		ETAP	CALCULADO
Barra 03	110	1,36	1,359
Barra 04	23	4,35	4,342
Barra 05	6,6	14,28	14,270

Tabla 3.5: Valores comparativos de corrientes de cortocircuito trifásico entre ETAP y Cálculo en detalle

Con respecto a la Tabla 3.5 se verifica que los resultados mediante cálculo en detalle coinciden con los entregados por el software Etap 6.0.

3.4. Cálculo de cortocircuito trifásico en las barras, falla mínima, para el escenario con presencia del SIC y el Generador

De acuerdo a los cálculos desarrollados anteriormente para falla máxima se aplica el mismo procedimiento para falla mínima, resumiendo los datos obtenidos en tabla 3.6, comparando los resultados calculados y los datos arrojados por Etap 6.0.

Barras Tensión (kV)	Tonción (W)	Аро	rtes	lee 2 (kA) Total
	Tension (KV)	IFA (KA)	IFB (KA)	ICC SQ (KA)TOLAT
Barra BO	154	1,594	0,366	1,958
Barra B1	154	1,534	0,369	1,902
Barra B2	110	1,070	0,682	1,747
Barra B3	110	0,866	0,795	1,647
Barra B4	23	3,251	-	3,251
Barra B5	6,6	7,907	-	7,907

Tabla 3.6: Corrientes de falla mínima y aportes a primer escenario

Tabla 3.7: Valores comparativos de corrientes de cortocircuito trifásico entre ETAP y Cálculo en detalle

Darras	Tensión (KV)	Ісс 3Φ (КА)	Ісс 3Φ (КА)
Ddl1d5		ETAP	CALCULADO
Barra BO	154	1,960	1,958
Barra B1	154	1,900	1,902
Barra B2	110	1,750	1,747
Barra B3	110	1,650	1,647
Barra B4	23	3,250	3,251
Barra B5	6,6	7,91	7,907

3.5. Cálculo de cortocircuito trifásico en las barras, falla mínima, suministro con generador

Tabla 3.8: Corrientes de falla mínima y aportes a segundo escenario

Parras	Tonsión (k)()	Aportes	Lee 20 (kA)Tetal	
Dallas	Tension (KV)	IFA (KA)		
Barra B3	110	0,795	0,795	
Barra B4	23	2,260	2,260	
Barra B5	6,6	6,056	6,056	

Tabla 3.9: Valores comparativos de corrientes de cortocircuito trifásico entre ETAP y Cálculo en detalle

Darras	Tonción (K)/)	Ісс 3Φ (КА) Ісс 3Φ (КА)	
Ddl1d5		ETAP	CALCULADO
Barra B3	110	0,795	0,795
Barra B4	23	2,270	2,260
Barra B5	6,6	6,060	6,056

Los resultados obtenidos mediante los cálculos y los arrojados por el software Etap 6.0 son semejantes.

3.6. Dimensionamiento De Interruptores

El dimensionamiento de interruptores se realiza mediante el cálculo de corriente momentánea y ruptura en ambos casos con corrientes simétrica y asimétrica. Las fallas se realizan en ambos lados del interruptor, por tanto:

a) Para Corriente Momentánea se considera

Un tiempo de medio ciclo, es decir, t= 0,01 segundos. Generador y Motores Sincrónicos reactancias subtransiente X''.

b) Para Corriente de Ruptura se considera

Un tiempo de 4 ciclo, es decir, t= 0,08 segundos. Generador reactancia subtransiente X''. Motores Sincrónicos reactancia transiente X'.

Para tal efecto, en la figura 3.21 se presenta el diagrama unilineal, identificando la ubicación de cada uno de los interruptores. Por otro lado la tabla 3.10 se resumen las reactancias subtransiente y transiente para el cálculo de falla.

Diagrama unilineal de la red eléctrica en estudio.

Figura 3.21: Diagrama unilineal de la red eléctrica en estudio

Elementos	Reactancia Subtransiente (PU)	Reactancia Transiente (PU)
Z _{SIC}	0,23510 ∠88,55°	0,23510 ∠88,55°
Z _{L1}	0,01219 ∠46,78°	0,01219 ∠46,78°
Z _{T1}	0,24860 ∠88,22 °	0,24860 ∠88,22 °
Z _{L2}	0,17410 ∠31,73 °	0,17410 ∠31,73 °
Z _{T2}	0,20010 ∠88,15 °	0,20010 ∠88,15 °
Z _{G1}	0,28036 ∠80,85°	0,46220 ∠84,40°
Z _{T3}	0,33350 ∠87,61°	0,33350 ∠87,61°
Z _{L3}	0,14500 ∠47,53 °	0,14500 ∠47,53 °
Z _{T4}	0,33780 ∠87,39 °	0,33780 ∠87,39 °
Z _{M1}	1,80080 ∠84,59 °	2,50570 ∠86,10 °
Z _{M2}	3,5078 0∠86,17°	5,00500 ∠87,32°

Tabla 3.10: Valores de Reactancias de la Red en Estudio en (PU)

3.6.1. Dimensionamiento del interruptor I-0

A continuación se presenta el cálculo detallado de las corrientes de cortocircuito asociadas al interruptor I-O, considerando fallas al lado izquierdo y derecho del interruptor según norma.

3.6.2. Interruptor I-0

3.6.2.1. F0-1: Falla al lado izquierdo del interruptor I-0

3.6.2.1.1. Calculo corriente momentánea simétrica:

 $Z_{eq F0-1}$: Impedancia equivalente para falla F0-1

$$Z_{eq F0-1} = Z_{L1} + Z_{T1} + Z_{L2} + [(Z_{T2} + Z_{G1})//((Z_{T3} + Z_{L3} + Z_{T4}) + (Z_{M1}//Z_{M2}))] (PU)$$

 $I_{Momentánea Simétrica} = \frac{1}{Z_{eq F0-1}} = \frac{1}{0,7533\angle 76,34^{\circ}} = 1,3274 \angle -76,34^{\circ} (PU)$

$$I_{B1} = \frac{S_B}{\sqrt{3} V_{B1}} = \frac{100 \text{MVA}}{\sqrt{3} \times 154 \text{kV}} = 374,9028 \text{ (A)}$$

 $I_{Momentánea Simétrica} = 1,3274 \times 374,9028 = 497,64$ (A)

3.6.2.1.2. Calculo corriente momentánea asimétrica:

 $I_{Momentánea Asimétrica} = k \times I_{Momentánea Simétrica}$

k =
$$\sqrt{1 + 2e^{-4\pi f \frac{R}{X}t}} = \sqrt{1 + 2e^{-4\pi \times 50 \times \frac{0.1778}{0.7319} \times 0.01}} = 1,1977$$

 $I_{Momentánea Asimétrica} = 1,1977 \times 497,64 = 596,10$ (A)

3.6.2.1.3. Calculo corriente ruptura simétrica:

 $I_{\text{Ruptura Simétrica}} = \frac{1}{0.7680 \angle 76.68^{\circ}} = 1.3020 \angle -76.68^{\circ} (\text{PU})$

 $I_{B1} = 374,9028 (A)$

 $I_{Ruptura Simétrica} = 1,3020 \times 374,9028 = 488,15$ (A)

3.6.2.1.4. Cálculo corriente ruptura asimétrica:

 $I_{Ruptura Asimétrica} = k \times I_{Ruptura Simétrica}$

k =
$$\sqrt{1 + 2e^{-4\pi f \frac{R}{X}t}} = \sqrt{1 + 2e^{-4\pi \times 50 \times \frac{0.1769}{0.7473} \times 0.08}} = 1,0000$$

 $I_{Ruptura A simétrica} = 1,0000 \times 488,15 = 488,15$ (A)

3.6.2.2. F0-2: Falla al lado derecho del interruptor I-0

3.6.2.2.1. Cálculo corriente momentánea simétrica:

 $Z_{eq F0-2}$: Impedancia equivalente para falla F0-2

 $Z_{eq F0-2} = Z_{SIC}$

 $Z_{eq F0-2} = Z_{SIC} = 0,2351 \angle 88,55^{\circ} = 0,005949 + j0,2350$ (PU)

 $I_{\text{Momentánea Simétrica}} = \frac{1}{Z_{\text{eq F1-1}}} = \frac{1}{0,2351\angle 88,55} = 4,2535\angle -88,55^{\circ}(PU)$

$$I_{B1} = 374,9028 (A)$$

 $I_{Momentánea Simétrica} = 4,2535 \times 374,9028 = 1594,65$ (A)

3.6.2.2.2. Cálculo corriente momentánea asimétrica:

 $I_{Momentánea Asimétrica} = k \times I_{Momentánea Simétrica}$

k =
$$\sqrt{1 + 2e^{-4\pi f \frac{R}{X}t}} = \sqrt{1 + 2e^{-4\pi \times 50 \times \frac{0,005949}{0,2350} \times 0,01}} = 1,3612$$

 $I_{Momentánea Asimétrica} = 1,3612 \times 1594,65 = 2623,13$ (A)

3.6.2.2.3. Cálculo corriente ruptura simétrica:

$$Z_{eq F0-2} = Z_{SIC} = 0,2351 \angle 88,55^{\circ} = 0,005949 + j0,2350 (PU)$$

 $I_{Ruptura Simétrica} = \frac{1}{Z_{eq F1-1}} = \frac{1}{0,2351 \angle 88,55} = 4,2535 \angle -88,55 \circ (PU)$

$$I_{B1} = 374,9028 (A)$$

 $I_{Ruptura Simétrica} = 4,2535 \times 374,9028 = 1594,65$ (A)

3.6.2.2.4. Cálculo corriente ruptura asimétrica:

 $I_{Ruptura Asimétrica} = k \times I_{Ruptura Simétrica}$

$$k = \sqrt{1 + 2e^{-4\pi f \frac{R}{X}t}} = \sqrt{1 + 2e^{-4\pi \times 50 \times \frac{0,005949}{0,2350} \times 0,08}} = 1,2491$$

 $I_{Ruptura Asimétrica} = 1,2491 \times 1594,65 = 1991,89$ (A)

Así realizando el cálculo en detalle en la tabla 3.11 se resumen las magnitudes de las cuatro corrientes de cortocircuito a cada lado del interruptor I-0.

Interruptor I- 0	F0-1 KA	F0-2 KA
I MOMENTANEA SIMETRICA	0,49	1,59
I MOMENTANEA ASIMETRICA	0,59	2,62
I RUPTURA SIMETRICA	0,48	1,59
I RUPTURA ASIMETRICA	0,48	1,99

Tabla 3.11: Resumen de corrientes de falla en interruptor I-0

Es así que considerando la peor condición, esto es para falla al lado derecho del 52-IO, se establece que el interruptor en 154 KV debe poseer una capacidad momentánea simétrica a 2 KA, una capacidad asimétrica mayor a 3 KA.

3.6.3. Dimensionamiento de interruptores I-1 al I-12

Empleando un procedimiento de cálculo similar al descrito para el dimensionamiento de interruptor I-O en la tabla 3.12 se resumen las magnitudes de falla al lado izquierdo y derecho del interruptor, así como la especificación base de cada interruptor de poder.

INTERRUPTOR	DESCRIPCION	FALLA F1 (KA)	FALLA F2 (KA)	ESPECIFICION
	I MOMENTANEA SIMETRICA	0,50	1,53	2 KA
I-1	I MOMENTANEA ASIMETRICA	0,60	2,36	3 KA
	I RUPTURA SIMETRICA	0,49	1,53	2 KA
154 KV	I RUPTURA ASIMETRICA	0,49	1,61	2 KA
INTERRUPTOR	DESCRIPCION	FALLA F1 (KA)	FALLA F2 (KA)	ESPECIFICION
	I MOMENTANEA SIMETRICA	-	2,09	3 KA
I-2	I MOMENTANEA ASIMETRICA	-	3,01	4 KA
-	I RUPTURA SIMETRICA	-	2,02	3 KA
154 KV	I RUPTURA ASIMETRICA	-	2,03	3 KA
INTERRUPTOR	DESCRIPCION	FALLA F1 (KA)	FALLA F2 (KA)	ESPECIFICION
	I MOMENTANEA SIMETRICA	1,04	1,06	2 KA
I-3	I MOMENTANEA ASIMETRICA	1,15	1,64	2 KA
	I RUPTURA SIMETRICA	1,01	1,06	2 KA
110 KV	I RUPTURA ASIMETRICA	1,01	1,17	2 KA

Tabla 3.12: Especificación interruptores I-1 al I-12 (1 de 3)

Tabla 3.12: Especificación interruptores I-1 al I-12 (2 de 3)

INTERRUPTOR	DESCRIPCION	FALLA F1 (KA)	FALLA F2 (KA)	ESPECIFICION
1-4	I MOMENTANEA SIMETRICA	-	2,08	3 KA

	I MOMENTANEA ASIMETRICA	-	2,65	3 KA
	I RUPTURA SIMETRICA	-	2,06	3 KA
110 KV	I RUPTURA ASIMETRICA	TURA ASIMETRICA - 2,06 3 KA		3 KA
INTERRUPTOR	DESCRIPCION	FALLA F1 (KA)	FALLA F2 (KA)	ESPECIFICION
	I MOMENTANEA SIMETRICA	1,35	0,86	2 KA
I-5	I MOMENTANEA ASIMETRICA	2,19	0,99	3 KA
	I RUPTURA SIMETRICA	1,30	0,86	2 KA
110 KV	I RUPTURA ASIMETRICA	1,54	0,86	2 KA
INTERRUPTOR	DESCRIPCION	FALLA F1 (KA)	FALLA F2 (KA)	ESPECIFICION
	I MOMENTANEA SIMETRICA	1,09	1,12	2 KA
I-6	I MOMENTANEA ASIMETRICA	1,79	1,35	2 KA
	I RUPTURA SIMETRICA	1,09	1,07	2 KA
110 KV	I RUPTURA ASIMETRICA	1,36	1,07	2 KA
INTERRUPTOR	DESCRIPCION	FALLA F1 (KA)	FALLA F2 (KA)	ESPECIFICION
	I MOMENTANEA SIMETRICA	0,26	1,94	2 KA
I-7	I MOMENTANEA ASIMETRICA	0,39	2,62	3 KA
	I RUPTURA SIMETRICA	0,21	1,94	2 KA
110 KV	I RUPTURA ASIMETRICA	0,22	1,94	2 KA
INTERRUPTOR	DESCRIPCION	FALLA F1 (KA)	FALLA F2 (KA)	ESPECIFICION
	I MOMENTANEA SIMETRICA	_	1,84	2 KA
I-8	I MOMENTANEA ASIMETRICA	_	1,84	2 KA
	I RUPTURA SIMETRICA	-	1,81	2 KA
110 KV	I RUPTURA ASIMETRICA	-	1,81	2 KA
INTERRUPTOR	DESCRIPCION	FALLA F1 (KA)	FALLA F2 (KA)	ESPECIFICION
	I MOMENTANEA SIMETRICA	1,64	3,47	4 KA
I-9	I MOMENTANEA ASIMETRICA	2,69	4,29	5 KA
	I RUPTURA SIMETRICA	1,25	3,47	4 KA
23 KV	I RUPTURA ASIMETRICA	1,56	3,47	4 KA
INTERRUPTOR	DESCRIPCION	FALLA F1 (KA)	FALLA F2 (KA)	ESPECIFICION
	I MOMENTANEA SIMETRICA	-	5,09	6 KA
I-10	I MOMENTANEA ASIMETRICA	-	6,79	7 KA
	I RUPTURA SIMETRICA	-	4,71	5 KA
23 KV	I RUPTURA ASIMETRICA	-	4,71	5 KA
	DESCRIPCION	FALLA F1 (KA)	FALLA F2 (KA)	ESPECIFICION
	I MOMENTANEA SIMETRICA	4,85	10,75	11 KA
I-11	I MOMENTANEA ASIMETRICA	8,05	14,84	15 KA
	I RUPTURA SIMETRICA	3,49	10,01	11 KA
6,6 KV	I RUPTURA ASIMETRICA	4,59	10,01	11 KA

Tabla 3.12: Especificación interruptores I-1 al I-12 (3 de 3)

			-	
INTERRUPTOR	DESCRIPCION	FALLA F1 (KA)	FALLA F2 (KA)	ESPECIFICION

I-12	I MOMENTANEA SIMETRICA	2,49	2,49 13,13	
	I MOMENTANEA ASIMETRICA	4,14	18,62	19 KA
	I RUPTURA SIMETRICA	1,74	11,74	12 KA
6,6 KV	I RUPTURA ASIMETRICA	2,27	11,78	12 KA

Como resultado del cálculo de cortocircuito se han evaluado las condiciones de operación de los TT/CC frente a falla. Es así que al considerar TT/CC tipo 5P20, se verifica que en el TT/CC 8 existe una situación de saturación dado los altos niveles de falla, en tabla 3.14 se resumen los resultados.

TT/CC	RELACION	I. NOMINAL	I. FALLA	FACTOR	CUMPLE
0	400/5	400	2623,13	6,6	SI
1	300/5	300	2369	7,9	SI
2	200/5	200	2369	11,8	SI
3	300/5	300	1649,99	5,5	SI
4	200/5	200	1649,99	8,2	SI
5	300/5	300	2192,29	7,3	SI
6	200/5	200	1798,97	9,0	SI
7	200/5	200	2626,14	13,1	SI
8	100/5	100	2626,14	26,3	NO
9	600/5	600	4294,73	7,2	SI
10	300/5	300	4294,73	14,3	SI
11	1000/5	1000	14847,41	14,8	SI
12	1000/5	1000	18627,44	18,6	SI

Tabla 3.13: Corriente de saturación de los transformadores de corriente.
Universidad del Bío-Bío. Sistema de Bibliotecas - Chile

CAPÍTULO 4: ESTUDIO DE COORDINACIÓN DE PROTECCIONES

Capítulo 4: Estudio de Coordinación de Protecciones

4.1. Fundamentos

A continuación se realiza el análisis de la coordinación de las protecciones para falla trifásica, mediante el software ETAP 6.0. Para cada caso se presenta el diagrama unilineal con la falla en la barra, la secuencia y tiempo de operación. Además de la carta de coordinación asociada. En las tablas 4.1, 4.2 y 4.3 se presentan los ajustes de los relés establecidos con anterioridad. Con los ajustes existentes se evaluara la coordinación y selectividad de cada relé, analizando la gráfica y carta de coordinación arrojada por ETAP.

Descripción/Función	Relé O	Relé 1	Relé 2	Relé 3
Fabricante	GE Multilin	GE Multilin	GE Multilin	GE Multilin
Modelo	750/760	750/760	750/760	750/760
Tensión (kV)	154 KV	154 kV	154 KV	110 kV
PT de Fase	154 kV / 120 V	154 kV / 120 V	154 kV / 120 V	110 kV / 120 V
CT de Fase	400/5	300/5	200/5	300/5
Fase Overcurrent				
Curve Type	ANSI - Very Inverse	ANSI - Very Inverse	-	ANSI - Very Inverse
Pickup	0,375xCT	0,767xCT	-	0,7xCT
Time Dial	2	1,5	-	2,5
Fase Instantaneous				
Pickup	6xCT	8xCT	2xCT	5xCT
Delay (sec)	0,01	0,01	0,01	0,01

Tabla 4.1 Ajustes de relés Relé 0, Relé 1, Relé 2 y Relé 3.

Tabla 4.2 Ajustes de relés Relé 4, Relé 5, Relé 6 y Relé 7.

Descripción / Función	Relé 4	Relé 5	Relé 6	Relé 7
Fabricante	GE Multilin	GE Multilin	GE Multilin	GE Multilin
Modelo	750/760	750/760	750/760	750/760
Tensión (kV)	110 KV	110 kV	110 KV	110 kV
PT de Fase	110 kV / 120 V	110 kV / 120 V	110 kV / 120 V	110 kV / 120 V
CT de Fase	200/5	300/5	300/5	200/5
Fase Overcurrent				
Curve Type	-	ANSI - Very Inverse	ANSI - Very Inverse	ANSI - Very Inverse
Pickup	-	0,7xCT	0,9xCT	0,8xCT
Time Dial	-	2	1,7	1,4
Fase Instantaneous				
Pickup	2xCT	4xCT	5xCT	4xCT
Delay (sec)	0,01	0,01	0,01	0,01

Tabla 4.3 Ajustes de relés Relé 8,9,10 y 11.

Descripción / Función	Relé 8	Relé 9	Relé 10	Relé 11
Fabricante	GE Multilin	GE Multilin	GE Multilin	GE Multilin
Modelo	750/760	750/760	750/760	750/760
Tensión (kV)	110 KV	2 3 kV	KV	6,6 kV
PT de Fase	110 kV / 120 V	23 kV/120V	kV / 120 V	6,6 kV / 120 V
CT de Fase	100/5	600/5	300/5	1000/5
Fase Overcurrent				
Curve Type	-	ANSI - Very Inverse	-	ANSI - Very Inverse
Pickup	-	0,833xCT	-	0,88xCT
Time Dial	-	1	-	5,12
Fase Instantaneous				
Pickup	2xCT	-	2xCT	4xCT
Delay (sec)	0,01	-	0,01	0,01

Tabla 4.4 Ajustes de relés Relé 12.

Descripción / Función	Relé 12
Fabricante	GE Multilin
Modelo	750/760
Tensión (kV)	6,6 KV
PT de Fase	6,6 kV / 120 V
CT de Fase	1000/5
Fase Overcurrent	
Curve Type	ANSI - Very Inverse
Pickup	0,88xCT
Time Dial	3,57
Fase Instantaneous	
Pickup	4xCT
Delay (sec)	0,01

Presentado el ajuste de los relés, realizamos en análisis de falla encada una de las barras en ambos escenarios de operación.

4.2. Análisis de falla trifásica en las barras (30 ciclos)

4.2.1. Análisis de falla trifásica en barra BO Primer escenario

Referente al diagrama unilineal de la figura 4.1 se puede visualizar la operación de las protecciones CBO, CB5, CB3, CB6 y sus corrientes de falla correspondiente, con respecto a la falla analizada en BO.

Figura 4.1. Falla trifásica en barra BO.

En relación a la información de la Tabla 4.8, para la falla trifásica en la barra BO, los relés RO, R5, R3 y R6 detectan la corriente de falla, dando la señal de apertura a sus respectivos interruptores.

Se verifica que los tiempos de respuesta son inaceptables para asegurar la correcta operación de la red eléctrica, ya que solo el relé 0 opera antes de 1 segundo.

	3-Phase (Symmetrical) fault on bus: Bus0									
		Data Rev.: Ba	se	Config: Normal	Date: 08-23-2016					
Time (ms)	ID	If (kA)	T1 (ms)	T2 (ms)	Condition					
578	Relay 0	1,595	578		Phase - OC1 - 51					
678	CB0		100		Tripped by Relay 0 Phase - OC1 - 51					
1619	Relay 5	0,514	1619		Phase - OC1 - 51					
1719	CB5		100		Tripped by Relay 5 Phase - OC1 - 51					
2024	Relay 3	0,514	2024		Phase - OC1 - 51					
2124	CB3		100		Tripped by Relay 3 Phase - OC1 - 51					
2578	Relay 6	0,514	2578		Phase - OC1 - 51					
2678	CB6		100		Tripped by Relay 6 Phase - OC1 - 51					
3849	Relay 1	0,367	3849		Phase - OC1 - 51					
3949	CB1		100		Tripped by Relay 1 Phase - OC1 - 51					

Tabla 4.8 Secuencia y tiempo de operación de las protecciones.

Con respecto a la figura 4.2 cabe destacar que si bien la secuencia de operación de las protecciones es aceptable en el relé 0 y relé 5; el relé 5 opera en un tiempo mayor a 1 segundo, lo cual no es aceptable; las curvas de los relés 3 y 6 se cruzan y no permiten un respaldo adecuado.

Figura 4.2. Carta de coordinación.

4.2.2. Análisis de falla trifásica en barra B1 Primer escenario

Referente al diagrama unilineal de la figura 4.3 se puede visualizar la operación de las protecciones CBO, CB5, CB3, CB6 y sus corrientes de falla correspondiente, con respecto a la falla analizada en la barra B1.

En relación a la información de la Tabla 4.9, para la falla trifásica en la barra B1, el relé R0, R5, R6 y R3 detecta la corriente de falla, dando la señal de apertura a sus respectivos interruptores.

Se verifica que los tiempos de respuesta son inaceptables para asegurar la correcta operación de la red eléctrica, ya que solo el relé 0 opera antes de 1 segundo.

			3-Phase (S	ymmetrical) fau	lt on bus: Bus1
,	Dat	a Rev.: Bas	e (Config: Normal	Date: 08-23-2016
Time (ms)	ID	If (kA)	T1 (ms)	T2 (ms)	Condition
606	Relay 0	1,534	606		Phase - OC1 - 51
706	CB0		100		Tripped by Relay 0 Phase - OC1 - 51
1584	Relay 5	0,519	1584		Phase - OC1 - 51
1684	CB5		100		Tripped by Relay 5 Phase - OC1 - 51
1980	Relay 3	0,519	1980		Phase - OC1 - 51
2080	CB3		100		Tripped by Relay 3 Phase - OC1 - 51
2508	Relay 6	0,519	2508		Phase - OC1 - 51
2608	CB6		100		Tripped by Relay 6 Phase - OC1 - 51
3729	Relay 1	0,371	3729		Phase - OC1 - 51
3829	CB1		100		Tripped by Relay 1 Phase - OC1 - 51

Tabla 4.9 Secuencia y tiempo de operación de las protecciones

Con respecto a la figura 4.4 cabe destacar que si bien la secuencia de operación de las protecciones es aceptable en el relé 0 y relé 5; el relé 5 opera en un tiempo mayor a 1 segundo, lo cual no es aceptable; las curvas de los relés 3 y 6 se cruzan y no permiten un respaldo adecuado.

Figura 4.4. Carta de coordinación.

4.2.3. Análisis de falla trifásica en barra B2 Primer escenario

Referente al diagrama unilineal de la figura 4.5 se puede visualizar la operación de las protecciones CB1, CB5,CB3, CB6 y sus corrientes de falla correspondiente, con respecto a la falla analizada en la barra B2.

Figura 4.5. Falla trifásica en barra B2.

En relación a la información de la Tabla 4.10, para la falla trifásica en la barra B2, el relé R1, R5, R3, y R6 detecta la corriente de falla, dando la señal de apertura a sus respectivos interruptores.

Se verifica que los tiempos de respuesta son inaceptables para asegurar la correcta operación de la red eléctrica, ya que solo el relé 1 opera antes de 1 segundo.

3-Phase (Symmetrical) fault on bus: Bus2								
Data Rev.: Base Config: Normal Date: 08-23-2016								
Time (ms)	ID	If (kA)	T1 (ms)	T2 (ms)	Condition			
675	Relay 1	0,765	675		Phase - OC1 - 51			
775	CB1		100		Tripped by Relay 1 Phase - OC1 - 51			
932	Relay 5	0,683	932		Phase - OC1 - 51			
1032	CB5		100		Tripped by Relay 5 Phase - OC1 - 51			
1165	Relay 3	0,683	1165		Phase - OC1 - 51			
1265	CB3		100		Tripped by Relay 3 Phase - OC1 - 51			
1280	Relay 6	0,683	1280		Phase - OC1 - 51			
1380	CB6		100		Tripped by Relay 6 Phase - OC1 - 51			
2111	Relay 0	0,765	2111		Phase - OC1 - 51			
2211	CB0		100		Tripped by Relay 0 Phase - OC1 - 51			

Tabla 4.10 Secuencia y tiempo de operación de las protecciones

Con respecto a la figura 4.6 cabe destacar que si bien la secuencia de operación de las protecciones es aceptable en el relé 1 y relé 5; el relé 3 opera en un tiempo mayor a 1 segundo, lo cual no es aceptable; las curvas de los 4 relés se cruzan y no permiten un respaldo adecuado.

Figura 4.6. Carta de coordinación.

4.2.4. Análisis de falla trifásica en barra B3 Primer escenario

Referente al diagrama unilineal de la figura 4.7 se puede visualizar la operación de las protecciones CB5, CB3,CB6,CB1 y sus corrientes de falla correspondiente, con respecto a la falla analizada en la barra B3.

Figura 4.7. Falla trifásica en barra B3.

En relación a la información de la Tabla 4.11, para la falla trifásica en la barra B3, el relé R5, R3, R6, R1 detecta la corriente de falla, dando la señal de apertura a sus respectivos interruptores.

Se verifica que los tiempos de respuesta son aceptables para asegurar la correcta operación de la red eléctrica, eliminando los aportes del SIC y el generador.

	3-Phase (Symmetrical) fault on bus: Bus3						
,	Data	a Rev.: Bas	e	Config: Normal	Date: 08-23-2016		
Time (ms)	ID	If (kA)	T1 (ms)	T2 (ms)	Condition		
654	Relay 5	0,867	654		Phase - OC1 - 51		
754	CB5		100		Tripped by Relay 5 Phase - OC1 - 51		
818	Relay 3	0,867	818		Phase - OC1 - 51		
918	CB3		100		Tripped by Relay 3 Phase - OC1 - 51		
944	Relay 6	0,795	944		Phase - OC1 - 51		
993	Relay 1	0,619	993		Phase - OC1 - 51		
1044	CB6		100		Tripped by Relay 6 Phase - OC1 - 51		
1093	CB1		100		Tripped by Relay 1 Phase - OC1 - 51		
3740	Relay 0	0,619	3740		Phase - OC1 - 51		
3840	CB0		100		Tripped by Relay 0 Phase - OC1 - 51		

Tabla 4.11 Secuencia y tiempo de operación de las protecciones

Con respecto a la figura 4.8 cabe destacar que si bien la secuencia de operación de las protecciones es aceptable en el relé 5, relé 3 y relé 6, no hay coherencia en la selectividad.

Figura 4.8. Carta de coordinación.

4.2.5. Análisis de falla trifásica en barra B4 Primer escenario

Referente al diagrama unilineal de la figura 4.9 se puede visualizar la operación de las protecciones CB7,CB5,CB3,CB6 y sus corrientes de falla correspondiente, con respecto a la falla analizada en la barra B4.

Figura 4.9. Falla trifásica en barra B4.

En relación a la información de la Tabla 4.11, para la falla trifásica en la barra 6, el relé R7, R5, R3, R6 detectan la corriente de falla, actuando sobre sus respectivos interruptores.

Se verifica que los tiempos de respuesta son inaceptables para asegurar la correcta operación de la red eléctrica, ya que solo el relé 7 opera antes de 1 segundo.

	3-Phase (Symmetrical) fault on bus: Bus4							
,	Dat	a Rev.: Bas	e (Config: Normal	Date: 08-23-2016			
Time (ms)	ID	If (kA)	T1 (ms)	T2 (ms)	Condition			
441	Relay 7	0,68	441		Phase - OC1 - 51			
541	CB7		100		Tripped by Relay 7 Phase - OC1 - 51			
4185	Relay 5	0,358	4185		Phase - OC1 - 51			
4285	CB5		100		Tripped by Relay 5 Phase - OC1 - 51			
5231	Relay 3	0,358	5231		Phase - OC1 - 51			
5331	CB3		100		Tripped by Relay 3 Phase - OC1 - 51			
11278	Relay 6	0,328	11278		Phase - OC1 - 51			
11378	CB6		100		Tripped by Relay 6 Phase - OC1 - 51			

Tabla 4.11 Secuencia y tiempo de operación de las protecciones

Con respecto a la figura 4.10 cabe destacar que si bien la secuencia de operación de las protecciones es aceptable en el relé 7 y relé 5; el relé 5 opera en un tiempo mayor a 1 segundo, lo cual no es aceptable; las curvas de los relés 3 y 6 se cruzan y no permiten un respaldo adecuado.

Figura 4.10. Carta de coordinación.

4.2.6. Análisis de falla trifásica en barra B5 Primer escenario

Referente al diagrama unilineal de la figura 4.11 se puede visualizar la operación de las protecciones CB9,CB7,CB5 y sus corrientes de falla correspondiente, con respecto a la falla analizada en la barra B5.

En relación a la información de la Tabla 4.12, para la falla trifásica en la barra B5, el relé R9, R7, R5 detectan la corriente de falla, dando la señal de apertura a sus respectivos interruptores.

Se verifica que los tiempos de respuesta aceptables para asegurar la correcta operación de la red eléctrica, ya que solo el relé 9 y relé 7 operan antes de 1 segundo y se despeja la falla.

	3-Phase (Symmetrical) fault on bus: Bus5								
,		Data Rev.: Base	:	Config: Normal	Date: 08-23-2016				
Time (ms)	ID	If (kA)	T1 (ms)	T2 (ms)	Condition				
353	Relay 9	2,269	353		Phase - OC1 - 51				
453	CB9		100		Tripped by Relay 9 Phase - OC1 - 51				
768	Relay 7	0,474	768		Phase - OC1 - 51				
868	CB7		100		Tripped by Relay 7 Phase - OC1 - 51				
14466	Relay 5	0,25	14466		Phase - OC1 - 51				
14566	CB5		100		Tripped by Relay 5 Phase - OC1 - 51				

Tabla 4.12 Secuencia y tiempo de operación de las protecciones

Con respecto a la figura 4.12 cabe destacar que si bien la secuencia de operación de las protecciones son aceptadas en el relé 9, relé 7 y relé 5; se destaca que el relé 5 opera en un tiempo mayor a 1 segundo, lo cual no es aceptable; pero aun así se aprecia coherencia en la selectividad.

Figura 4.12. Carta de coordinación.

4.2.7. Análisis de falla trifásica en barra B3 Segundo escenario

Referente al diagrama unilineal de la figura 4.13 se puede visualizar la operación de la protección, CB6 y sus corrientes de falla correspondiente, con respecto a la falla analizada en la barra B3.

Figura 4.13. Falla trifásica en barra B3 Segundo escenario

En relación a la información de la Tabla 4.13, para la falla trifásica en la barra B3, el relé R6 detecta la corriente de falla, dando la señal de apertura al interruptor CB6.

Se verifica que los tiempos de respuesta son aceptables para asegurar la correcta operación de la red eléctrica, ya que el relé 6 opera antes de 1 segundo, interrumpiendo el aporte del generador.

	🖸 Sequence	-of-Operation	Events - O	utput Repor	t: Untitled		23		
	3-Phase (Symmetrical) fault on bus: Bus3								
	Data Rev.: Base Config: Normal Date: 08-23-2016								
1	Time (ms)	ID	If (kA)	T1 (ms)	T2 (ms)	Condition			
	945 1045	Relay 6 CB6	0,795	945 100		Phase - OC1 - 51 Tripped by Relay 6 Phase - OC1 - 51			

Tabla 4.13 Secuencia y tiempo de operación de las protecciones

Con respecto a la figura 4.14 destaca que la operación del rele8 es correcta, aunque cercano a 1 segundo.

Figura 4.14. Carta de coordinación.

4.2.8. Análisis de falla trifásica en barra B4 Segundo escenario

Referente al diagrama unilineal de la figura 4.13 se puede visualizar la operación de las protecciones, CB7, CB6 y sus corrientes de falla correspondiente, con respecto a la falla analizada en la barra B4.

Figura 4.15. Falla trifásica en barra B4.

En relación a la información de la Tabla 4.13, para la falla trifásica en la barra B4, el relé R7 y R6 detectan la corriente de falla, dando la señal de apertura a CB7 y CB6.

Se verifica que los tiempos de respuesta son inaceptables para asegurar la correcta operación de la red eléctrica, ya que el relé 6 opera después de 1 segundo, sin respaldar al relé 7.

Sequence-of-Operation Events - Output Report: Untitled									
3-Phase (Symmetrical) fault on bus: Bus4									
Data Rev.: Base Config: Normal Date: 08-23-2016									
Time (ms)	ID	If (kA)	T1 (ms)	T2 (ms)	Condition				
769	Relay 7	0,474	769		Phase - OC1 - 51				
869	CB7		100		Tripped by Relay 7 Phase - OC1 - 51				
3149	Relay 6	0,474	3149		Phase - OC1 - 51				
3249	CB6		100		Tripped by Relay 6 Phase - OC1 - 51				

Tabla 4.13 Secuencia y tiempo de operación de las protecciones

Con respecto a la figura 4.16 cabe destacar que la secuencia de operación de las protecciones es aceptable en el relé 7y relé 6, el relé 6 opera en un tiempo mayor a 1 segundo, lo cual no es aceptable. Se destaca la coherencia en la selectividad,

Figura 4.16. Carta de coordinación.

4.2.9. Análisis de falla trifásica en barra B5 Segunda escenario

Referente al diagrama unilineal de la figura 4.13 se puede visualizar la operación de las protecciones, CB9, CB7, CB6 y sus corrientes de falla correspondiente, con respecto a la falla analizada en la barra B5.

Figura 4.17. Falla trifásica en barra B5

En relación a la información de la Tabla 4.13, para la falla trifásica en la barra B5, el relé R9, R7, R6 detectan la corriente de falla, dando la señal de apertura a sus respectivos interruptores.

Se verifica que los tiempos de respuesta son inaceptables para asegurar la correcta operación de la red eléctrica, ya que solo el relé 9 opera antes de 1 segundo.

Sequence-of-Operation Events - Output Report: Untitled										
3-Phase (Symmetrical) fault on bus: Bus5										
	I	Data Rev.: Bas	e	Config: Normal	Date: 08-23-2016					
Time (ms)	ID	If (kA)	T1 (ms)	T2 (ms)	Condition					
418	Relay 9	1,739	418		Phase - OC1 - 51					
518	CB9		100		Tripped by Relay 9 Phase - OC1 - 51					
1345	Relay 7	0,364	1345		Phase - OC1 - 51					
1445	CB7		100		Tripped by Relay 7 Phase - OC1 - 51					
6816	Relay 6	0,364	6816		Phase - OC1 - 51					
6916	CB6		100		Tripped by Relay 6 Phase - OC1 - 51					

Tabla 4.13 Secuencia y tiempo de operación de las protecciones

Con respecto a la figura 4.18 cabe destacar que si bien la secuencia de operación de las protecciones es aceptable en los tres relés; el relé 7 y 6 opera en un tiempo mayor a 1 segundo, lo cual no es aceptable; se destaca que las curvas poseen una coherencia en su selectividad.

Figura 4.18. Carta de coordinación.

Universidad del Bío-Bío. Sistema de Bibliotecas - Chile

CAPÍTULO 5: COMENTARIOS Y CONCLUSIONES

Capítulo 5: Comentarios, Conclusiones y bibliografía.

5.1. Comentarios, conclusiones y bibliografía

Mediante el presente seminario fue posible realizar un estudio de cortocircuito y operación de protecciones eléctricas mediante el manejo de software ETAP y configuración de relés digitales 750/760. Para ello se realiza el estudio de coordinación de protecciones en planta eléctrica típica, contemplando dos escenarios de operación, el primer escenario corresponde al suministro de energía desde el SIC a la subestación N°1 mediante la línea de transmisión L1, a su vez suministra energía a la subestación N°2 mediante la línea de transmisión L2, la subestación N°2, cabe destacar que esta subestación tiene un generador en servicio. El segundo escenario corresponde a la desconexión del SIC en donde solo el generador suministra la energía a las subestación N°2 y subestación N°3 mediante la línea de distribución L3.

Realizado en levantamiento de los elementos que participan activamente en un cortocircuito, se obtienen datos típicos, para la estimación de parámetros detallados de cada elemento perteneciente al SEP, siendo estos el SIC, las líneas, los transformadores, motores sincrónicos y generadores, realizando un procedimiento que se puede aplicar en diversos escenarios existentes en la actualidad.

Calculado los parámetros se ingresan al software ETAP, se procede a realizar el cálculos de cortocircuito trifásico para estimar las corrientes de falla máxima y mínima de la red eléctrica en estudio, siendo estos comparados con los resultados que se obtengan del análisis generado por el software ETAP. En capítulo 3 del presente seminario se analizan la falla máxima y mínima, en tabla 3.2.7 se resumen los datos correspondientes a falla máxima y en tabla 3.3.4 se resumen los datos correspondientes a la falla mínima, se observa que los valores calculados coinciden con los valores obtenidos por el software ETAP comprobando satisfactoriamente la coherencia en los resultados y validando el procedimiento.

En el estudio y coordinación de protecciones, se consideran los ajustes establecidos con anterioridad, siendo estos ingresados al software ETAP cargado con las impedancias obtenidas en el cálculo de parámetros en el capítulo 2. Al simular fallas en las barras obtenemos la secuencia de operación en el diagrama unilineal de ETAP, al igual que el tiempo de operación y la carta de coordinación, esta información detallada permite analizar en forma minuciosa las fallas simuladas.

Cabe destacar que la secuencia de operación es razonable, pero definitivamente los tiempos de operación son inaceptables, se debe corregir de inmediato esta situación y analizar en mayor profundidad los ajustes dado que los ajustes existentes son deficientes.

Al finalizar sólo nos queda acotar que el tiempo invertido en el desarrollo de esta actividad, nos entregó valiosa experiencia en lo profesional, puesto que se utilizaron gran parte de los conocimientos asimilados durante nuestro proceso de formación académica y nos ayudó a explorar nuevas metodologías informáticas de forma práctica y didáctica.

Bibliografía

- Superintendencia de Electricidad y Combustibles S.E.C. Nch 4/2003. Electricidad Instalaciones de Consumo en Baja Tensión.
- Superintendencia de Electricidad y Combustibles S.E.C. NSEG 5. E.n.71.Reglamento de Instalaciones Eléctricas de Corrientes Fuertes.
- Superintendencia de Electricidad y Combustibles S.E.C. NSEG 8. En.75. Electricidad Tensiones Normales para Sistemas e Instalaciones.
- > Tecnología Electrónica. Agustín Castejón-German Santamaría.
- Informes y Documentos del CDEC SIC Centro de Despacho Económico de Cargas del Sistema Interconectado Central.
- Conceptos Básicos en Sistemas Eléctricos de Potencia. Juan Carlos Delgado Navarro.

Universidad del Bío-Bío. Sistema de Bibliotecas - Chile

ANEXOS A

Tablas Y Curvas Normalizadas Para Generadores, Motores Y Transformadores

Anexo A: Tablas Y Curvas Normalizadas Para Generadores, Motores Y Transformadores

A.1 Parámetros X/R Generadores y motores sincrónicos

Grafico para la selección de X/R correspondiente al generador y motores sincrónicos. Para la selección de X/R se debe ingresar con la potencia aparente del generador o motor en el eje horizontal, seleccionando la curva de alta velocidad, velocidad media o alta velocidad, luego desplazarse al eje vertical para seleccionar la razón X/R.

A.2 Parámetros X/R de los transformadores

Grafico para la selección de X/R correspondiente a los transformadores. Para la selección de X/R se debe ingresar con la potencia aparente del transformador en el eje horizontal, se desplaza hacia la curva y al interceptar, luego desplazarse al eje vertical para seleccionar la razón X/R.

En la presente tabla se seleccionan las reactancias correspondientes a los transformadores en donde se debe ingresar con la tensión del primario en el lado de alto voltaje y seleccionar en bajo voltaje el que coincida con la tensión del secundario de nuestro transformador.

Valores normalizados de reactancia para transformadores normales de dos devanados autoenfriados 25-60 Ciclos/Seg" (1 de 2)

		Reactancia en porcentaje								
en alto voltaje	en bajo voltaje	Completamer	nte aislados	Con aislamiento reducido al neutro						
		Mínimo	Máximo	Mínimo	Máximo					
2400-15000	440-15000	4,5	7							
15001-25000	440-15000	5,5	8							
-	440-15000	6,5	9							
25001-34500	25001-34500	7	10							
	440-25000	6,5	9							
34501-46000	25001-34500	7	10							
	440-34500	7	10							
46001-69000	34501-46000	8	11							
	440-34500	7,5	10,5	7	10					
69001-92000	34501-69000	8,5	12,5	8	11,5					
	940-34500	8	12	7,5	10,5					
92001-115000	34500-69000	9	14	8,5	12,5					
	69001-92000	10	15,5	9,5	14					

A.3.1 Parámetros para la selección de reactancias correspondientes a los transformadores.

Valores normalizados de reactancia para transformadores normales de dos devanados autoenfriados 25-60 Ciclos/Seg" (2 de 2)

		Reactancia en porcentaje								
en alto voltaje	en bajo voltaje	Completamer	nte aislados	Con aislamiento reducido al neutro						
		Mínimo	Máximo	Mínimo	Máximo					
	440-34500	8,5	13	8	12					
115001-138000	34501-69000	9,5	15	9	14					
	69001-11500	10,5	17	10	16					
138001-161000	440-46000	9	14	8,5	13					
	46001-92000	10,5	16	9,5	15					
	92001-161000	11,5	18	10,5	17					
	440-46000	10	15	9	14					
161001-196000	46001-92000	11,5	17	10,5	16					
	92001-161000	12,5	19	11,5	18					
	440-46000	11	16	10	15					
196001-230000	46001-92000	12,5	18	11,5	17					
	42001-161000	14	20	12,5	19					

Universidad del Bío-Bío. Sistema de Bibliotecas - Chile

ANEXOS B Tabla cables aluminio ACSR Cabel

Anexo B: Tabla cables aluminio ACSR Cabel

B.1 Tabla cables de aluminio ACSR Cabel seleccionados para las líneas de transmisión

			Diámetros (mm)								Carga	Resistencia		Capacidad de	
Cableado	Código	Calibre	Hilos Individuales					Peso(Kg/Km)			de Rotura	(Ohm/Km)		(2)	CC(3)
Aluminio/Acero		AWG/ Kcmil	Acero	AI	Núcleo	lotal	RMG	AI	Acero	Total	Kg	DC a 20°C(1)	AC a 75℃	А	kA
Cableado 6/1	Swan	4	2,12	2,12	2,12	6,36	2,05	58,1	27,4	85,5	845	1,32	1,70	139	3,2
\bigcirc	Sparrow	2	2,67	2,67	2,67	8,01	2,58	92,3	43,6	136	1290	0,83	1,10	184	5,1
	Robin	1	3,00	3,00	3,00	9,00	2,90	116,4	55,0	171	1612	0,658	0,884	211	6,4
	Raven	1/0	3,37	3,37	3,37	10,11	3,25	146,8	69,3	216	1985	0,522	0,717	241	8,0
	Quail	2/0	3,78	3,78	3,78	11,35	3,65	185,1	87,4	273	2405	0,414	0,584	275	10,1
	Pigeon	3/0	4,25	4,25	4,25	12,74	4,10	233,5	110,3	344	3003	0,328	0,479	313	12,8
ME: 8400 CDL: 18,9	Penguin	4/0	4,77	4,77	4.77	14,31	4,61	294,4	139,0	433	3787	0,260	0,396	355	16,1

En la presente tabla se presentan los datos utilizados para las líneas de trasmisión LT1 y LT2.

B.1 Tabla cables de aluminio ACSR Cabel seleccionados para las líneas de transmisión

En la presente tabla se presentan los datos utilizados para las líneas de trasmisión LT3.

Cableado 18/1	Waxwing	266.8	3,09	3,09	3,09	15,46	6,00	374,8	58,4	433	3122	0,212	0,259	448	20,3
	Widgeon (Merlin)	336.4	3,47	3,47	3,47	17,36	6,74	472,6	73,7	546	3937	0,168	0,205	519	25,6
	Chicadee	397.5	3,77	3,77	3,77	18,87	7,32	558,5	87,1	646	4511	0,142	0,174	576	30,2
	Pelican	477	4,13	4,13	4,13	20,67	8,02	670,1	104,5	775	5334	0,118	0,145	646	36,3
400	Osprey	556.5	4,47	4,47	4,47	22,33	8,66	781,8	121,9	904	6223	0,102	0,124	712	42,3
ME: 7074 CDL: 21,2	Kingbird	636	4,77	4,77	4,77	23,87	9,26	893,5	139,3	1033	7111	0,0889	0,109	775	48,4

Notas

(1) Incluye aporte del núcleo.

(2) Capacidad de corriente a temperatura ambiente 25°C, temperatura conductor 75°C, emisión solar 1kW/m2, coeficientes de absorción y

emisividad 0,5, velocidad del viento 610 mm/seg, a nivel del mar y a 60 Hz.

(3) Corriente de corto circuito para un (1.0) segundo, a una temperatura inicial 75°C y temperatura final 645°C.

ME: Módulo de Elasticidad en kgf/mm2, CDL: Coeficiente de Dilatación Lineal 10 exp(-6) /°C, RMG: Radio Medio Geométrico.

Otras configuraciones, calibres y longitudes no especificadas en este catálogo están disponibles bajo pedido. Los datos aquí indicados están

sujetos a las tolerancias normales de fabricación y pueden ser cambiados sin previo aviso.

Universidad del Bío-Bío. Sistema de Bibliotecas - Chile

ANEXOS C

Tablas normalizadas de fecha y vano para conductores, gráfico de fuerza para cálculo mecánico y regulación de tensión.

7•ANEXO C: Tablas normalizadas de flecha y vano para conductores y gráfico de fuerza para cálculo mecánico

En la presente tabla se seleccionan los datos para la interpolación ingresando con el valor obtenido en el cálculo correspondiente.

V/S	Y/S	F/S	L/S	V/S	Y/S	F/S	L/S
factor de tensión horizontal	factor de tensión	flecha unitaria	longitud unitaria	factor de tensión horizontal	factor de tensión	flecha unitaria	longitud unitaria
100	100,0013	0,00125	1,0000042	6,25	6,27	0,02001	1,001066
90,9091	90,9105	0,001375	1,0000051	5,8824	5,9036	0,02126	1,001205
83,3333	83,3348	0,0015	1,0000061	5,5555	5,5781	0,02252	1,001351
76,9231	76,9247	0,001625	1,0000071	5,2632	5,2869	0,02377	1,001503
71,4286	71,4303	0,00175	1,0000082	5	5,025	0,02502	1,001668
66,6667	66,6685	0,001875	1,0000094	4,7619	4,7882	0,02627	1,001839
62,5	62,502	0,002	1,0000107	4,5455	4,573	0,02753	1,002017
58,8235	58,8257	0,002125	1,000012	4,3478	4,3766	0,02878	1,002205
55,5555	55,5578	0,00225	1,0000135	4,1667	4,1967	0,03004	1,002402
52,6316	52,6339	0,002375	1,000015	4	4,0313	0,03129	1,002606
50	50,0025	0,0025	1,000017	3,8462	3,8787	0,03255	1,002819
45,4545	45,4573	0,00275	1,00002	3,7037	3,7342	0,0338	1,00304
41,6667	41,6697	0,003	1,000025	3,5714	3,6065	0,03506	1,00327
40	40,0031	0,00313	1,000026	3,4483	3,4846	0,03631	1,003508
38,4615	38,4648	0,00325	1,000028	3,3333	3,3709	0,03757	1,003754
35,7143	35,7178	0,0025	1,000033	2,9412	2,9838	0,0426	1,004825
33,3333	33,3371	0,00275	1,000037	2,5	2,5502	0,05017	1,00668
31,25	31,254	0,004	1,000043	2,2727	2,328	0,05522	1,008086
29,4118	29,416	0,00425	1,000048	2	2,0628	0,06283	1,010444
28,5714	28,5758	0,00438	1,000051	1,8519	1,9198	0,06791	1,012194

TENSIONES Y LONGITUDES EN FUNCION DE LA RELACION FELCHA-VANO (1 de 2)

TENSIONES Y LONGITUDES EN FUNCION DE LA RELACION FELCHA-VANO (2 de 2)

factor de tensión horizontal	factor de tensión	flecha unitaria	longitud unitaria	factor de tensión horizontal	factor de tensión	flecha unitaria	longitud unitaria
27,7777	27,7823	0,0045	1,000054	1,6667	1,7422	0,07556	1,015068
26,3158	26,3205	0,00475	1,00006	1,5625	1,6432	0,08068	1,017154
25	25,005	0,005	1,000067	1,4286	1,517	0,0884	1,020542
22,7273	22,7328	0,0055	1,000081	1,3514	1,4449	0,09356	1,022973
20,8333	20,8393	0,006	1,000096	1,25	1,3513	0,10134	1,026881
20	20,0063	0,00625	1,000104	1,1905	1,2070	0,10655	1,02966
19,2308	19,2373	0,0065	1,000113	1,1111	1,2255	0,11441	1,034093
17,8571	17,8641	0,007	1,000131	1,0638	1,1835	0,11968	1,037224
16,6667	16,6742	0,0075	1,00015	1	1,1276	0,12763	1,04219
15,625	15,633	0,008	1,000171	0,9091	1,0501	0,1411	1,05119
14,7059	14,7144	0,0085	1,000193	0,8333	0,9879	0,15455	1,06109
13,8889	13,8079	0,009	1,000216	0,7143	0,8965	0,18226	1,08369
13,1579	13,1674	0,0095	1,000241	0,625	0,8358	0,21083	1,11013
12,5	12,51	0,01	1,000267	0,5555	0,7962	0,24061	1,14057
11,6279	11,6387	0,01075	1,000308	0,5	0,77154	0,27154	1,1752
10,6383	10,6501	0,01175	1,000368	0,4545	0,75842	0,30387	1,21423
10	10,0125	0,0125	1,000417	0,4167	0,75444	0,33777	1,25788
9,0909	9,1047	0,01375	1,000504	0,3846	0,75804	0,37343	1,29645
8,3333	8,3483	0,015	1,0006	0,3571	0,76818	0,41104	1,36021
7,6923	7,7084	0,01626	1,000704	0,3333	0,78414	0,4508	1,41952
7,1428	7,1604	0,01751	1,000817	0,3125	0,80546	0,49296	1,48473
6,6667	6,6854	0,01876	1,000938				

Grafico para obtener F/S*G del cálculo mecánico

En el siguiente grafico se toma el valor F/S*G igual a "6" para el procedimiento de cálculo mecánico ya que el presente grafico relaciona el largo con la flecha del conductor.

Además se considera la extensión del grafico anterior para la obtención del largo y la flecha ajustada a los requerimientos del dimensionamiento de la línea.

Regulación de tensión

A continuación se demuestra y justifica el uso de la aproximación para el cálculo de la regulación de tensión.

Norma chilena NSEG 5en71 capítulo 9:

Esta norma establece que la caída de tensión puede variar entre más menos 7.5%, respecto a la tensión nominal.

Fórmula para cálculo de caída de tensión en líneas:

$$V_{B1} - V_{B2} = \frac{R * P + X * Q}{V_{B2}}$$

Efecto del transformador sobre la tensión

$$V_{SEC(REAL)} = V_{PRIM(REAL)} * \frac{V_{SEC(NOM)} * (1 \pm tap)}{V_{PRIM(NOM)} * (1 \pm tap)}$$

Para un aproximado de la caída de tensión en el transformador se usará la impedancia equivalente de éste

Así el diagrama fasorial queda dispuesto de la siguiente manera.

Realizando una aproximación y despreciando el Angulo se obtiene.

Realizando el desarrollo matemático se exponen las siguientes ecuaciones.

$$\Delta V = I * R * \cos(\varphi) + I * X * sen(\varphi) \qquad P = V * I * \cos(\varphi)$$

$$\Delta V * V_{B2} = I * R * \cos(\varphi) + I * X * sen(\varphi) * V_{B2} \qquad Q = V * I * sen(\varphi)$$

AL remplazar he igualando la ecuación obtenemos la aproximación que se utiliza directamente en el cálculo de regulación de tensión.

$$V_{B1} - V_{B2} * V_{B2} = R * P + X * Q$$

ANEXO D

Tabla Normalizada para Maquinas Sincrónicas

ANEXO D Tabla normalizadas maquinas sincrónicas

D.1 Parámetros para la obtención de reactancia de generador y motor

En la presente tabla se selecciona las reactancias de secuencia positiva, secuencia negativa, secuencia cero, transiente, subtransiente de los generadores y motores, donde se puede seleccionar un valor mínimo o máximo o bien el promedio de ambas.

		approximate reactances in percentage of machine KVA rating						open circuit time constant Tpo (s)
		Xd	X'd	X''d	X2	XO	Xeq	
turbine	average	115	15	9	11	3	75	4
generator, two-pole	range	95 - 145	12-21	7-14	9-16	1-8	60-100	3-7
turbine generator,	average	115	23	14	16	5	75	6
four-pole	range	95-145	20-28	12-17	14-19	1,5-14	60-100	4-9
waterwheel generator,	average	100	35	30	50	7	65	5
without amortisseur windings	range	60-145	20-45	17-40	30-65	4-25	40-100	2-10
waterwheel generator,	average	100	35	22	22	7	65	5
witht amortisseur windings	range	60-145	20-45	13-35	13-35	4-25	40-100	2-10
Synchronouns	average	180	40	25	25	8	70	8
condensers	range	150-220	30-60	20-35	20-35	2-15	60-90	5-12
salient-pole motors,	average	80	25	18	19	5	50	2,5
high-speed	range	65-90	15-35	10-25	10-25	2-15	40-60	1-4
salient-pole motors,	average	110	50	35	35	7	70	2,5
low-speed	range	80-150	40-70	25-45	25-45	4-27	50-100	1-4

Table 11-6—Synchronous machine constants.

D.2 Parámetros X/R de generador

En la presente tabla se selecciona la relación X/R del generador ingresando con las características de

Equivalent System X/R Ratio at Typical Location (For Quick Aprroximations)						
Type of Circuit	X/R					
(1) Synchronous machines connected directy to the bus or through reactors	40-120					
(2) Synchronous machines connected through transformers rated 100 MVA and larger	40-60					
(3) Synchronous machines connected through transformers rated 25 to 100 MVA for each three-phase bank	30-60					
(4) remote synchronous machines connected through transformers rated 100 MVA or larger for each three-phase bank, where the transformers provide 90 percent or more of the total equivalent impedance to the fault point						
(5) remote synchronous machines connected through transformers rated 10 MVA to 100 MVA for each three-phase bank, where the transformers provide 90 percent or more of the total equivalent impedance to the fault point	15-40					
(5) remote synchronous machines connected through through other types of circuits, such as: transformers rated 10 MVA or smaller for each three-phase bank, transmission lines, distribution feeders, etc.	15 or less					

Table 4: Equivalent System X/R Ratio at Typical Location (For Quick Aprroximations)

Universidad del Bío-Bío. Sistema de Bibliotecas - Chile

ANEXOS E

Descripción General del Relé SR750

Anexo B: Descripción General del Relé SR750

B.1 Aspectos generales

El relé digital 750/760 es un relé orientado a la protección y el control de la gestión de alimentadores de distribución y cuya vista frontal se presenta en la figura B.1. Proporciona funciones de protección integral para los alimentadores y copias de seguridad de protección para el bus, transformadores y líneas de transmisión.

Básicamente, el relé 750/760 tiene dos elementos TOC (time overcurrent), con detectores de nivel para cada fase. Además incorpora dos elementos de sobrecorriente comúnmente utilizados para la protección primaria y copia de seguridad. Cada elemento TOC tiene las siguientes características programables:

Captura nivel actual de viaje, alarma o de control

Elección de 15 formas de curvas (incluyendo Flex Curves) y multiplicadores curva

Características de tiempo de reposición instantánea o lineal

Restricción de voltaje

Figura B.1 Vista frontal del relé SR 750/760

B.2 Características y funciones de protección

Dentro de las potencialidades del relé, este tiene la posibilidad de habilitar distintas familias de curvas de operación, estas son:

Curva ANSI: Extremadamente inversa, Muy inversa, Normalmente inverso,

Moderadamente inverso y de Tiempo definido.

Curva IEC: Curva A (BS142), Curva B (BS142), Curva C (BS142) y Short inversa.

Curva IAC: Extremadamente inversa, Muy inversa, Inversa y Short inversa.

Curva Custom: FlexCurve™A y FlexCurve™B.

Al considerar las potencialidades de protección que es posible habilitar, con la tabla B.1. Se describen las distintas funciones disponibles en el relé.

Tabla B.1 Funciones de protecciones disponibles en el relé SR 750/760

De la gran variedad de funciones de protección del relé SR 750/760 destacan:

- Protección de fase con retardo e instantánea
- Protección de neutro con retardo e instantánea
- Protección de tierra con retardo e instantánea

Además, incluye función de protección direccional de fase y residual, protección de tensión y frecuencia, así como la posibilidad de habilitar un control de factor de potencia a través de dos etapas de banco de condensadores.

Universidad del Bío-Bío. Sistema de Bibliotecas - Chile

ANEXOS F Curvas de daño Transformadores

ANEXO E: Curvas de daño Transformadores

E.1 Curva de Daño Transformador T1

En la figura E.1, que se presenta a continuación, se puede comprobar que el relé R1 no opera con la corriente nominal (FLA), ni con la corriente de magnetización Inrush del transformador. También se puede observar, que la curva del relé se ubica debajo de la curva ANSI, la cual indica el valor máximo de cortocircuito que soporta el transformador sin que se produzca daño por esfuerzos mecánicos y térmicos.

Figura E.1: Curva de Daño Transformador 1

E.2 Curva de Daño Transformador T2

En la figura E.2, que se presenta a continuación, se puede comprobar que el relé R6 no opera con la corriente nominal (FLA), pero si con la corriente de magnetización Inrush del transformador. También se puede observar, que la curva del relé se ubica debajo de la curva ANSI, la cual indica el valor máximo de cortocircuito que soporta el transformador sin que se produzca daño por esfuerzos mecánicos y térmicos.

Figura E.2: Curva de Daño Transformador 2

E.3 Curva de Daño Transformador T3

En la figura E.3, que se presenta a continuación, se puede comprobar que el relé R7 no opera con la corriente nominal (FLA), pero si con la corriente de magnetización Inrush del transformador. También se puede observar, que la curva del relé se ubica debajo de la curva ANSI, la cual indica el valor máximo de cortocircuito que soporta el transformador sin que se produzca daño por esfuerzos mecánicos y térmicos.

Figura E.3: Curva de Daño Transformador 3

E.4 Curva de Daño Transformador T4

En la figura E.3, que se presenta a continuación, se puede comprobar que el relé R7 no opera con la corriente nominal (FLA), pero si con la corriente de magnetización Inrush del transformador. También se puede observar, que la curva del relé se ubica debajo de la curva ANSI, la cual indica el valor máximo de cortocircuito que soporta el transformador sin que se produzca daño por esfuerzos mecánicos y térmicos

Figura E.4: Curva de Daño Transformador 4

Universidad del Bío-Bío. Sistema de Bibliotecas - Chile