Soporte a la toma de decisión en el Área de Análisis & Mejoramiento Mina, utilizando Data Mart, en la Mina Spence, Bhp Billiton.

Alumno
Felipe Andres Romero Pedreros

Profesor Guía
Sergio Bravo Silva

TESIS
Para obtener el grado de
INGENIERO CIVIL EN INFORMÁTICA
Resumen

Este proyecto se presenta para dar finalidad a los requisitos exigidos por la Universidad del Bío-Bío para el proceso de titulación de la carrera de Ingeniería Civil en Informática. El proyecto titulado “Soporte a la toma de decisión de Análisis & Mejoramiento Mina utilizando Data Mart” el cual consiste en una propuesta de solución a un problema que se enfrenta en la industria de la minería, que es el gran manejo de datos y la gran complejidad en el análisis de estos, el cual fue canalizado a través del programa de Memoristas de Bhp Billiton en Chile. La idea de este proyecto es llevar los datos de la operación a información que comprenda el negocio.

El documento consta de secciones compuesto de la teoría sobre Data Warehouse y por un estudio de factibilidad, requerimientos, análisis, diseño e implementación de una propuesta en resolución a la problemática.

Abstract

This project appears to give purpose to the requirements of the University of Bío-Bío to the process obtaining of degree Civil Engineering in Infomatic. The project entitled "Support to decision making using Mine Analysis & Improvement Data Mart" which is a proposed solution to a problem facing the mining industry, which is the big data management and big complexity in the analysis of these, which was channeled through the program memoirists of BHP Billiton in Chile. The idea of this project is to bring the details of the transaction information comprising the business.

The document consists of compound sections on Data Warehouse theory and a feasibility study, requirements analysis, design and implementation of a proposed resolution to the problem.
<table>
<thead>
<tr>
<th>Tabla de contenido</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resumen ..</td>
<td>2</td>
</tr>
<tr>
<td>Abstract ..</td>
<td>2</td>
</tr>
<tr>
<td>1 Introducción ..</td>
<td>6</td>
</tr>
<tr>
<td>1.1 Historia ...</td>
<td>7</td>
</tr>
<tr>
<td>1.2 Definición ..</td>
<td>9</td>
</tr>
<tr>
<td>2 Definición del proyecto</td>
<td>10</td>
</tr>
<tr>
<td>2.1 Objetivos del Proyecto</td>
<td>10</td>
</tr>
<tr>
<td>2.1.1 Objetivo general</td>
<td>10</td>
</tr>
<tr>
<td>2.1.2 Objetivo Específico</td>
<td>10</td>
</tr>
<tr>
<td>2.2 Justificación del proyecto</td>
<td>10</td>
</tr>
<tr>
<td>2.3 Alcance del Proyecto</td>
<td>11</td>
</tr>
<tr>
<td>2.4 Metodología ..</td>
<td>12</td>
</tr>
<tr>
<td>2.4.1 Fases del proyecto</td>
<td>12</td>
</tr>
<tr>
<td>2.5 Abreviaciones ...</td>
<td>14</td>
</tr>
<tr>
<td>3 Descripción de la empresa</td>
<td>15</td>
</tr>
<tr>
<td>3.1 Misión ...</td>
<td>15</td>
</tr>
<tr>
<td>3.2 Visión ...</td>
<td>15</td>
</tr>
<tr>
<td>3.3 Ciclo Proceso de Producción</td>
<td>16</td>
</tr>
<tr>
<td>4 Marco Teórico ..</td>
<td>21</td>
</tr>
<tr>
<td>4.1 Data Warehouse y Data Mart</td>
<td>21</td>
</tr>
<tr>
<td>4.1.1 Data Warehouse ..</td>
<td>21</td>
</tr>
<tr>
<td>4.1.1.1 Bill Inmon ...</td>
<td>21</td>
</tr>
<tr>
<td>4.1.1.2 Ralph Kimball</td>
<td>21</td>
</tr>
<tr>
<td>4.1.2 Data Mart ..</td>
<td>22</td>
</tr>
<tr>
<td>4.1.3 Diferencia Data Warehouse y Data Mart</td>
<td>22</td>
</tr>
<tr>
<td>4.1.4 Proceso ETL ...</td>
<td>22</td>
</tr>
<tr>
<td>4.1.5 OLPT ..</td>
<td>23</td>
</tr>
<tr>
<td>4.1.6 OLAP ..</td>
<td>23</td>
</tr>
<tr>
<td>4.1.7 ROLAP ..</td>
<td>23</td>
</tr>
<tr>
<td>4.1.8 MOLAP ..</td>
<td>23</td>
</tr>
</tbody>
</table>
4.1.9 HOLAP (Hybrid OLAP) .. 24
4.1.10 Cubo OLAP .. 24
 4.1.10.1 Medidas .. 24
 4.1.10.2 Hechos ... 25
 4.1.10.3 Granularidad ... 25
 4.1.10.4 Dimensiones ... 25
 4.1.10.5 Jerarquías .. 26
 4.1.10.6 Niveles .. 26
 4.1.10.7 Atributos .. 27
 4.1.10.8 Drill Down y Roll Up .. 28
4.1.11 Esquemas de Cubos .. 28
 4.1.11.1 Esquema Copo Nieve .. 28
 4.1.11.2 Esquema Estrella ... 29
5 Definición de requerimientos .. 30
 5.1 Especificación de requerimientos .. 30
 5.1.1 Requerimientos funcionales .. 30
 5.1.2 Requerimientos de hardware ... 32
6 ESTUDIO DE FACTIBILIDAD .. 36
 6.1 Factibilidad técnica .. 36
 6.2 Factibilidad operativa .. 39
 6.3 Factibilidad económica .. 46
7 Análisis .. 51
 7.1 Contexto del sistema .. 51
 7.2 Modelo del dominio .. 51
 7.3 Identificación de los actores ... 52
 7.4 Caso de Uso .. 53
 7.4.1 Identificación de casos de uso .. 54
 7.5 Análisis de la arquitectura .. 84
 7.5.1 Paquete carga de datos .. 84
 7.5.2 Paquete de Seguridad ... 84
 7.5.3 Paquete Descargas .. 85
1 Introducción

Desde hace muchos años las organizaciones poseen datos y poder de computo de ellos, para poder tener un acceso oportuno y adecuado, ya que son transformados en información dependiendo de cada necesidad. Emplean aplicaciones operacionales que proporcionan accesos directo a la información, algunas extraen los datos y remodelan estos para responder a las necesidades. Con el fin de poder tomar buenas decisiones

Las organizaciones ven reflejados sus procesos a través de flujos de datos, los cuales son almacenados en base de datos operacional, respondiendo a la necesidad de la operación, día a día (minutos, segundos, etc...), siendo su enfoque la transacción, y no el análisis para la toma de decisión.

La gran problema es que su enfoque no es el análisis, no están diseñadas para ese tipo de uso. También a través del tiempo estas organizaciones manejan datos inconsistentes y se toman decisiones importantes basadas en ella. En la organización falla el concepto del uso eficiente de sus recursos de información.

El concepto de Data Warehouse nace a mediados de los años noventa, en respuesta de la necesidad del análisis de los datos, de apoyo a la toma de decisión.

Ello es de gran interés para una organización, ya que el Data Warehouse es una colección de datos, en la cual integras las fuentes de información y se usa como soporte de la toma de decisión, está enfocado directamente en el proceso del negocio.

Un Data Warehouse es un repositorio de datos creado a partir de una selección de fuentes de datos, que puede ser una o más bases de datos, lo cuales a través de un proceso llamado ETL (extract, transform, load), el cual se basa en la extracción posterior transformación (puede ser la limpieza y reparación de inconsistencia de datos) para la posterior carga de esos datos, son almacenados en una nueva base de datos, la cual está modelada conforme al proceso de negocio, esto posibilita el proceso de obtención de los datos de una perspectiva del análisis, de esta forma se logra facilitar a los integrantes de la organización el mejor de los
datos, para que el proceso de la toma de decisión sea más efectivo y se aprovecha de forma efectiva los recursos información.

1.1 Historia

Los antecedentes históricos indican que el Data Warehouse ha tenido 4 grandes etapas [1]

Prehistoria, comienzo de los 80s.

Las tecnologías de la información estaban enfocadas en automatizar los procesos de tipo repetitivo y administrativos, con el uso de sistemas de información operacionales o transaccionales en línea (OLTP, On Line Transactional Processing). Este tipo de sistema recoge y almacena la información diaria que se genera en los sistemas informáticos de la organización en sus diferentes divisiones o áreas. Reportes, contabilidades, datos del cliente y todo aquello que requiera almacenar información y lo que requiera la operación.

Su captura es rápida y segura a grandes volúmenes de información, donde su enfoque está puesto en la actualización de los datos y tiempos de respuestas.

Los sistemas de información de tipo OLTP están diseñados para resolver problemas de tipo operacional, la ejecución y apoyo de tareas que son básicas del negocio. Es por eso que no son útiles a la hora de realizar análisis estratégicos del negocio.

Edad media, mediados de los años 80.

Las empresas comienzan a crecer con nuevas necesidad dentro de la organizaciones, de esa forma comienzan a cambiar los requerimientos de información empieza la mayor cantidad de consulta de los datos para poder generar
más informes, el no poder dar abasto a las nuevas necesidad es el que se plantea el generar bases de datos centralizadas con información más detallada y resumida.

Pero con eso nacen nuevas problemáticas, con la centralización era necesario generar soluciones a la redundancia de datos, problemas transaccionales, los tiempos de acceso y respuesta.

Es el año 1985 aparece el primer Data Warehouse, el cual integro y organizo los datos dispersos en la compañía, este fue creado por Inmon (autor de varias filosofías sobre Data Warehouse) para un Banco en Colorado, Estados unidos.

La revolución de los Dato, principio de los 90s.

Se considera a los datos como activos intangibles de la organización, los cuales representan la materia prima de la información, esta genera real ventajas competitivas dentro de una empresa.

La era de la información, finales de los noventa.

Se radicaliza el concepto de Data Warehouse, apareciendo nuevas herramientas de consulta de datos que mejoran el almacenamiento y uso de redes como internet, intranet, adaptándose a las necesidades de los usuarios proporcionando soluciones ad-hoc.

Tiempo actual.

En la época actual, las necesidades de las organizaciones es desde el punto de vista de análisis se han vuelto cada vez más complejas y crecen las necesidades, ya la explotación de datos cada vez es más, apareciendo herramientas de Minería de Datos y el concepto de Inteligencia de Negocio (BI, Business Intelligence). La integración de nuevos sistemas, por necesidad de nuevos requerimientos, el gran avance del internet y el interés de análisis para generar predicciones, tendencias, etc.
1.2 Definición

Un DW es una colección de datos a partir de los datos transaccionales y específicamente estructurados para realizar consultas y analizar la información [2]. Las metas de un diseño de DW están concentradas en entregar análisis multidimensional y capacidades de reportes, respondiendo a los requisitos mediante el modelo multidimensional.

Bill Inmon fue uno de los primeros autores en escribir sobre el tema de los almacenes de datos. Una colección de datos “orientados al sujeto”, “integrados”, “variables en el tiempo” y no volátiles” para ayudar al proceso de toma de decisiones gerenciales [3].

- **Orientados al Sujeto**: Datos que brindan información sobre un asunto del negocio, en vez de enfocarse en el estereotipo de las transacciones. El DW está orientado en los sujetos de la organización y no a los procesos y operaciones.

- **Integrados**: Los datos provenientes de diferentes fuentes y son integrados para que poseen una coherencia entre sí, generando una estandarización de codificaciones, formatos de campos, igualdad de datos, etc.

- **Variables en el tiempo**: Los cambios ocurridos en los datos a lo largo del tiempo quedan registrados para que informes que puedan generar, en donde estos se reflejan estos cambios.

- **No volátil**: La información no se modifica y no se elimina, los datos son estables en el tiempo, esta información solo pasa a ser solo lectura y se considera una historia dentro de la base de datos.

Otro autor conocido como Ralph Kimball, “una copia de las transacciones de datos específicamente estructurada posea la consulta y el análisis” o “la unión de todos los Data Marts de una entidad” [4].
2 Definición del proyecto

Se detalla los objetivos del proyecto y cómo se desarrolla, qué estándares y metodologías a seguir y qué herramientas se utiliza. Se incluyen las definiciones de las abreviaturas y siglas, con el fin que todo lector pueda entender a cabalidad.

2.1 Objetivos del Proyecto

2.1.1 Objetivo general

Analizar, diseñar e implementar de forma virtual un “Data Mart soporte de decisiones” en el Área de Análisis y Mejoramiento Mina, integrando las fuentes de datos de los sistemas operacionales existentes, para un posterior uso con herramientas y soluciones que proporcionan las aplicaciones de Business Intelligence.

2.1.2 Objetivo Específico

- Analizar y definir las fuentes de datos que permiten integrar el Data Mart, mediante el proceso ETL (extracción, transformación y carga de datos).
- Analizar y diseñar modelos de datos frente a las necesidades del proyecto, para construir un Data Mart funcional con una visión corporativa.
- Construcción e implementación virtual de Data Mart para uso de Herramientas de Inteligencia de Negocio (cubos de análisis, minería datos...).

2.2 Justificación del proyecto

En el análisis de procesos, existen varias falencias las cuales están relacionadas con la utilización de planillas Excel que consultan a las bases de datos con gran lentitud, que no proveen la información respectiva, gastando gran tiempo en la preparación de los datos, la cual es una perdida para el análisis de los datos.
La obtención de los datos es un proceso complejo con un lenguaje técnico, por lo tanto existe la necesidad de transformar el proceso a un análisis multidimensional para lograr información. El análisis multidimensional permite obtener resultados de una manera más simple.

Mejorar tiempos de respuesta, esto solucionado con MOLAP, ocupando los tiempo de carga y procesamiento en horas de no utilización de la información, solucionando el sobreuso de la red.

MOLAP entrega mejor tiempo de respuesta a la consulta, este realiza su proceso de carga y procesamiento en horas de no utilización de la información. También proporciona una baja en el consumo de la red.

La necesidad de unificar las fuentes de datos y no tener que estar solicitando a otras áreas de organización, tener el control de esta replica de datos.

2.3 Alcance del Proyecto

Este proyecto se enfoca en los procesos de carga y descarga en los procesos de producción en minería de cobre, de la mina Spencer, de Bhp Billiton. Estos procesos se consideran las siguientes medidas de análisis, agrupadas en dos grandes categorías: Movimientos de Materiales y Registro de Estados.

Movimientos de Materiales:

- Origen y Destino
- Equipos de Carguío y Transporte
- Tipos de Material
- Leyes
- Rendimiento

Registro de Estados:

- Utilización y Disponibilidad
- Horas Efectivas
- Horas de Demora y Mantenimiento
- Tiempo de Ciclo

2.4 Metodología

La metodología a utilizar es la planteada en la tesis doctoral de Luján-Mora [11], en donde se utiliza como herramienta de modelado el Lenguaje de Modela Unificado (UML), el cual está basado en el proceso de ingeniería para Data Warehouse DWEP (Data Warehouse Engineering Process) basado en el proceso unificado (RUP) y en UML.

![Figura 1. DWEP](image)

2.4.1 Fases del proyecto

Inicio

- Requerimientos
 - Requerimientos funcionales y no funcionales.
 - Identificación de las medidas y dimensiones más importantes.
 - Análisis de los reportes periódicos que se utilizan actualmente.
Elaboración del modelo del dominio
- Elaboración de los casos de uso más importantes

- Análisis
 - Determinación de las posibles fuentes de datos
 - Elaboración de los diagramas lógico de la fuente de datos, diagrama físico de las fuentes de datos.

- Diseño
 - Diseño definición de la estructura del Data Mart.
 - Elaboración del diagrama conceptual del Data Mart.

Elaboración
- Requerimientos
 - Recolección y refinamiento de requerimientos.
 - Identificación de nuevas medidas agregaciones y dimensiones.
 - Revisión de los casos de uso y elaboración de nuevos casos de uso.

- Análisis
 - Elección de fuentes de datos que alimenta el Data Mart.
 - Actualización del diagrama lógico de las fuentes de datos y el diagrama físico de las fuentes de datos.
 - Elaboración del diagrama conceptual de las fuentes de datos.

- Diseño
 - Definición procesos a nivel conceptual de los ETL más importantes (mapeo de datos) desde la fuente de datos hacia el Data Mart.
 - Actualización del diagrama conceptual del Data Mart.
 - Elaboración del diagrama mapeo de datos de integración del Data Mart.

- Implementación
 - Elaboración de las estructuras físicas del Data Mart.
 - Elaboración de los diagramas, Diagrama lógico del Data Mart, Diagrama físico del Data Mart, Diagramas de procesos ETL de integración.

- Pruebas
 - Planeación de pruebas.
 - Diseño de los casos de prueba.
 - Realización de las pruebas en base a los casos de pruebas.
Resultados y correcciones.

Construcción

- **Análisis**
 - Actualización de los diagramas: diagrama lógico de la fuente de datos, diagrama físico de la fuente de datos diagrama conceptual de la fuente de datos.

- **Diseño**
 - Actualización y definición de los nuevos procesos ETL a nivel conceptual (mapeo de datos) desde las fuentes de datos hacia el Data Mart.
 - Actualización de los diagramas conceptual del Data Mart mapeo de datos de integración.

- **Implementación**

2.5 Abreviaciones

A continuación se detallarán las abreviaciones, términos y siglas que se utilizan en el presente documento, con el fin de un mejor entendimiento del mismo

<table>
<thead>
<tr>
<th>Sigla</th>
<th>Definición</th>
</tr>
</thead>
<tbody>
<tr>
<td>DW</td>
<td>Data Warehouse</td>
</tr>
<tr>
<td>DM</td>
<td>Data Mart</td>
</tr>
<tr>
<td>OLAP</td>
<td>Procesamiento analítico en línea</td>
</tr>
<tr>
<td>OLTP</td>
<td>Procesamiento transaccional en línea</td>
</tr>
<tr>
<td>MOLAP</td>
<td>Procesamiento analítico multidimensional en línea</td>
</tr>
<tr>
<td>ROLAP</td>
<td>Procesamiento analítico relacional en línea</td>
</tr>
<tr>
<td>HOLAP</td>
<td>Procesamiento analítico híbrido en línea</td>
</tr>
<tr>
<td>DWEP</td>
<td>Proceso de ingeniería para Data Warehouse</td>
</tr>
<tr>
<td>RUP</td>
<td>Pocos Unificado</td>
</tr>
<tr>
<td>UML</td>
<td>Lenguaje unificado de modelamiento</td>
</tr>
</tbody>
</table>
3 Descripción de la empresa

BHP Billiton es el grupo de recursos diversificados más grande del mundo. Formado en Junio 2001 como resultado de la fusión entre BHP y Billiton. Posee 37.000 empleados en más de 100 operaciones en aproximadamente 25 países.

BHP Billiton tiene sus casas matrices en Melbourne Australia y en Londres UK, y centros corporativos en Johannesburgo, Santiago, Houston y Perth. Oficinas comerciales en Singapur, La Haya, Tokio, Seúl, Shangai.

3.1 Misión

En Bhp Billiton, nuestro objetivo es ser la empresa de elección, el cual crea valor sostenible para nuestros accionistas, empleados, contratistas, proveedores, clientes, socios del negocio y las comunidades. Aspiramos al cero daño en la gente, con buena acogida a las comunidades y el medio ambiente. Nos esforzamos para liderar las principales prácticas de la industria. Con principios sólidos para liderar seguridad, conducta empresarial, social, ambiental, del entorno y actividades económicas que son parte integral de la forma de hacer negocios.

3.2 Visión

BHP Billiton se esfuerza por crear valor a largo plazo a través del descubrimiento, el desarrollo y la reconversión de los recursos naturales, y el suministro de soluciones innovadoras los clientes y orientadas al mercado.
BHP Billiton está comprometida con una estrategia a largo plazo de invertir en operaciones de bajo costo, de clase mundial, ampliables y orientadas a la exportación que reflejan la diversificación en los mercados y regiones geográficas.
3.3 Ciclo Proceso de Producción

El ciclo de producción está basado en varios procesos, de los cuales comienzan desde la explotación hasta el empaquetamiento para su distribución, a continuación se detalla este ciclo.

Perforación

Quebrada Blanca es una zona enriquecida relativamente plana con dimensiones de 1 por 2 km, variando su espesor de 10 a 200 m, con un promedio de 80 m. Una vez definido el área de explotación a raso abierto, de acuerdo a los estudios realizados por los geólogos, se realizan varias perforaciones con una máquina Bucyrus Erie 47, especialmente diseñada para la faena.

Tronadura

En las perforaciones se introducen explosivos de tipo químico, que corresponden a una mezcla de materiales combustibles y oxidantes, que en una proporción adecuada y con una iniciación determinada, generan gases a alta temperatura y presión a objeto de dar inicio a la tronadura, la que permite la fragmentación de la roca, para luego extraer el material y ser procesado en la planta para la extracción del cobre.

Carga y Transporte

El material es cargado por las palas Bucyrus Erie 255 II de una capacidad de 40 tn. en los camiones marca Komatsu 730 E, que transportan hasta 185 tn. en cada viaje a la planta.

Los camiones descargan el material en una tova de 340 tn. de capacidad, que alimenta al Chancador Primario que se encarga de triturarlo. El material que no entra por el Chancador Primario, es triturado por una máquina Pica Roca de la marca Teledyne, que reduce el tamaño del mineral.
Chancador Primario

El Chancador Primario marca Allis Chalmers reduce el tamaño del material procedente de la mina. Luego este es transportado por una correa el stock pile grueso, que tiene una capacidad total de 80.000 tn.

Cuatro alimentadores ubicados en la base del stock pile grueso, descargan el material en una correa transportadora que alimenta a los Chancadores Secundario y Terciarios.

Chancador Secundario y Terciarios

El mineral es descargado en una tova que alimenta el Chancador Secundario, luego pasa a los Chancadores Terciarios, que operan en circuito cerrado, triturando el material para que alcance una granulometría de un 100% bajo los 0,5 pulgadas.

El mineral chancado es transportado por una correa de 1.600 m. de largo al sector de aglomeración, y por otra correa, parte de este material es desviado a un acopio de emergencia que almacena hasta 20.000 tn.
Aglomerado

El material es depositado en una tolva de 150 tn., por gravedad es transportado por dos correas que alimentan a dos tambores aglomeradores de 3 m. de diámetro por 9 m. de largo con una inclinación de 7º, que operan a una velocidad de rotación de 6 rpm., donde se mezcla con ácido sulfúrico concentrado y con agua caliente proveniente del sistema de enfriamiento de los generadores de energía eléctrica.

Este proceso aumenta la temperatura del material y su humedad en un 10%, mejorando la porosidad, oxigenación, permeabilidad y el escamamiento de la solución para facilitar la extracción del cobre. El mineral aglomerado es distribuido por un tripper hacia dos pilas.

Transporte hacia Área de Lixiviación

Las correas transportadoras en cascada llevan el material hacia las pilas.

Este material será depositado sobre un piso preparado e impermeabilizado, donde se han instalado ductos Drenaflex, de 4 pulgadas para canalizar la solución drenada y de 2 pulgadas para inyectar aire a las pilas.

En este proceso se forman 2 pilas de alrededor de 6 m. de altura.
Lixiviación Bacteriana en Pilas

Sobre el mineral aplacado se esparce una solución ácida diluida o solución lixiviante, mediante un sistema de irrigación que está compuesto por las líneas de goteros. La solución lixiviante escurre a través de la pila, disolviendo el cobre diseminado.

El proceso de lixiviación dura aproximadamente 360 días, en dicho período se alcanza una recuperación metalúrgica del 85% de cobre. La utilización de pilas dinámicas, permite que al termino del ciclo de lixiviación el material sea retirado y cargado nuevamente, formando una nueva pila.

La solución obtenida de las pilas de 2,7 a 3,0 gr/l. de Cu+2 (cation), es contenida por canaletas de recolección, las que alimentan a la Piscina PLS que tiene una capacidad de 40.000 m³, donde por gravedad se entrega a la planta de Extracción por Solventes.

Extracción por Solventes

La solución proveniente de la piscina PLS se mantiene con una solución orgánica, compuesta por diluyente Orfen SX-12 y extractante LIX 984. La solución captura los iones de cobre (Cu+2) en forma selectiva. De esta reacción se obtiene, por un lado una solución empobrecida en cobre que se denomina refino, la que se reutilizará nuevamente en el proceso de lixiviación y por otro lado, el orgánico cargado.

Este orgánico cargado es tratado con el Spent proveniente de la nave de electroobtención, para mejorar la concentración de cobre, produciendo el electrolito rico que avanza hacia el Tank Farm para continuar con el proceso de Electroobtención.
Electroobtención

El electroliro rico que contiene el cobre en forma de sulfato de cobre (Cu SO$_4$) es llevado a la nave de electroobtención (EW), que contiene 264 celdas de electroobtención que corresponden a estanques rectangulares de concreto polímero donde está la solución.

Cada celda contiene en su interior 60 cátodos de acero inoxidable, de aproximadamente 1 m2 cada uno y 61 ánodos compuestos de una mezcla de plomo, calcio y esténil.

Electroobtención

Estas celdas alternan un ánodo y un cátodo, y están conectadas conformando un circuito por el que se hace transitar una corriente eléctrica continua de muy baja intensidad, la que entra por los ánodos y sale por los cátodos. De esta forma, en el circuito los ánodos hacen las veces del polo positivo y los cátodos actúan como polo negativo.

El cobre en solución (catión, de carga positiva +2: Cu$^{2+}$) es atraído por el polo negativo, pegándose partícula por partícula en la superficie del cátodo en forma metálica (carga cero).

Este proceso dura de 5 a 7 días, plazo en el que se ha depositado cobre de alta pureza en ambas caras del cátodo con un espesor de 3 a 4 cm., lo que proporciona un peso total de 40 kg. por cátodo.

Finalizado este período, una grúa retira de a 20 cátodos por maniobra.

Esta lingota es lavada con agua caliente para remover las impurezas de su superficie y luego es transportada a la máquina Stripping Maching automática (despegadora de cátodos).

Cátodos Electroobtenidos

Las láminas de cobre son empaquetadas en lotes de 60, enzunchadas y pesadas.

En cada paquete de cátodos de cobre, el primer cátodo identifica el número de lote, el total de kilos del paquete y la fecha. En el segundo cátodo se realiza el muestreo, que permite determinar el contenido de cobre del paquete. Éste debe ser de un 99,99% de pureza y las impurezas deben ser de menos de 0,01% (principalmente azufre).

Los paquetes son desechados en camiones, que transportan una carga de hasta 11 paquetes hacia el puerto de Iquique, desde donde serán enviados a los clientes de Quebrada Blanca.
4 Marco Teórico

4.1 Data Warehouse y Data Mart

En este capítulo se muestran los conceptos y generalidades respecto a los Data Warehouse y Data Mart, siendo el marco teórico de referencia.

4.1.1 Data Warehouse

En el Campo de almacenamiento de datos, existen dos grandes tendencia en el desarrollo filosófico del concepto por los siguientes autores.

4.1.1.1 Bill Inmon

El Data Warehouse es una parte de un sistema de BI. Dentro de una empresa que tiene un Data Warehouse, los Data Marts obtienen su información a partir de este Data Warehouse. La información se almacena de acuerdo a la tercera forma normal (3NF).

4.1.1.2 Ralph Kimball

El Data Warehouse es un conglomerado de todos los Data Marts dentro de una empresa. La información siempre es almacenada de acuerdo al Modelo Dimensional.

Pese a las diferencias que se pueden apreciar de manera inmediata entre ambas arquitecturas, también existen elementos en común. Todas las empresas requieren almacenar recursos, analizar e interpretar la información que generan y acumulan con el fin de tomar decisiones críticas que permitan su existencia pero sobre todo que maximicen su prosperidad; por lo que se vuelve prioritario crear sistemas de análisis y retroalimentación para comprender su información (Data Warehouse) y de esta manera contar con los elementos adecuados para la toma de decisiones.
4.1.2 Data Mart

Es una versión reducida de un Data Warehouse, en donde se almacenan datos relativos de un área operacional concreta, ejemplo un área funcional. Un Data Mart puede ser dependiente o independiente de un Data Warehouse.

4.1.3 Diferencia Data Warehouse y Data Mart

Su alcance. El data mart está pensado para cubrir las necesidades de un grupo de trabajo o de un determinado departamento dentro de la organización. Es el almacén natural para los datos departamentales. En cambio, el ámbito del data warehouse es la organización en su conjunto. Es el almacén natural para los datos corporativos comunes.

<table>
<thead>
<tr>
<th>Categoría</th>
<th>Data Warehouse</th>
<th>Data Mart</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcance</td>
<td>Corporativo</td>
<td>Área de Negocios</td>
</tr>
<tr>
<td>Temas</td>
<td>Multiples</td>
<td>Simples</td>
</tr>
<tr>
<td>Fuentes de Datos</td>
<td>Muchas</td>
<td>Pocas</td>
</tr>
<tr>
<td>Tamaños</td>
<td>100 GB-TB+</td>
<td>< 100 GB</td>
</tr>
<tr>
<td>Tiempo de implementación</td>
<td>De meses a años</td>
<td>Meses</td>
</tr>
</tbody>
</table>

Tabla 1. Tabla comparativa Data Warehouse v/s Data Mart

4.1.4 Proceso ETL

Los procesos ETL son una parte de la integración de datos, pero es un elemento importante cuya función completa el resultado de todo el desarrollo de la cohesión de aplicaciones y sistemas.

La palabra ETL corresponde a las siglas en inglés de:
- Extraer: extract.
- Transformar: transform.
- Y Cargar: load.
4.1.5 OLPT

Son los sistemas conocidos como (On Line Transactional Processing). Estos procesamiento las transacciones de tiempo real de un negocio. Contienen estructura de datos optimizadas para la introducción y a la adición de datos.

4.1.6 OLAP

El propósito de sistemas OLAP (On Line Analytical Processing) es permitir un análisis multidimensional de las bases de datos de gran volumen para realizar un análisis especial de los mismos (que son el tema de consultas especiales). Gracias al OLAP, los usuarios pueden crear representaciones multidimensionales (llamadas hiper cubos o "cubos OLAP") de acuerdo con el criterio que ellos definan para simular situaciones.

4.1.7 ROLAP

Implementación OLAP que almacena los datos en un motor relacional. Típicamente, los datos son detallados, evitando las agregaciones y las tablas se encuentran normalizadas. Los esquemas más comunes sobre los que se trabaja son estrella ó copo de nieve, aunque es posible trabajar sobre cualquier base de datos relacional. La arquitectura está compuesta por un servidor de banco de datos relacional y el motor OLAP se encuentra en un servidor dedicado. La principal ventaja de esta arquitectura es que permite el análisis de una enorme cantidad de datos.

4.1.8 MOLAP

Esta implementación OLAP almacena los datos en una base de datos multidimensional. Para optimizar los tiempos de respuesta, el resumen de la información es usualmente calculado por adelantado. Estos valores pre calculados o agregaciones son la base de las ganancias de desempeño de este sistema. Algunos
sistemas utilizan técnicas de compresión de datos para disminuir el espacio de almacenamiento en disco debido a los valores pres calculados.

4.1.9 HOLAP (Hybrid OLAP)

Almacena algunos datos en un motor relacional y otros en una base de datos multidimensional.

4.1.10 Cubo OLAP

Es una base de datos multidimensional, en la cual el almacenamiento físico de los datos se realiza en un vector multidimensional [12]. Los cubos OLAP se pueden considerar como una ampliación de las dos dimensiones de una hoja de cálculo.

Las estructuras multidimensionales que conforma en el cubo son las medidas y los hechos.

4.1.10.1 Medidas

Las medidas representan los datos objetivos, muchas veces llamadas hechos. Un ejemplo típico de medidas son las ventas, los costos, ganancias márgenes, etc. Las medidas se organizan en una o más dimensiones. Las medidas están por lo general representadas por la forma de un cubo en donde los bordes o aristas del cubo son las dimensiones y el contenido del cubo son los valores de medida.

Existen dos tipos de medidas:

Medidas Almacenadas: son datos cargados, agregados y almacenados directamente en el Data Warehouse o Data Mart. Un ejemplo de esas puede ser ingresos por ventas, unidades vendidas, horas trabajadas, etc.

Medidas Calculadas: son el resultado de realizar cálculos matemáticos estándar en base a métricas simples. Por ejemplo el precio promedio de venta, que se calcula dividiendo la sumatoria total en dólares de las ventas entre unidades vendidas.
4.1.10.2 Hechos

Los hechos contienen información sobre cuantificaciones o datos sobre hechos relevantes del negocio que quieren ser consultados. Esta información a menudo está compuesta por valores numéricos que cuantifican las transacciones o son datos detallados acerca de las transacciones del negocio en un momento dado. Estos datos son almacenados en una simple tabla central llamada tabla de hechos. Esta tabla central o tabla de hechos puede estar compuesta por muchas columnas y millones de registros, llegando a ocupar espacios muy considerables en almacenamiento. Ejemplos clásicos de datos almacenados en tablas de hechos son: registros de ventas, inventarios, movimientos de cuentas, suscripciones, revistas, etc.

4.1.10.3 Granularidad

La granularidad es el nivel de detalle de los hechos en un Data Warehouse. Por ejemplo se determina que el mayor nivel de detalle de un cubo de ventas, es la cantidad de ventas realizadas por mes, o sea, no llega al detalle de ventas diarias.

4.1.10.4 Dimensiones

Las dimensiones identifican y categoriza los datos del negocio. Ejemplos de dimensiones pueden ser producto, geografía, tiempo, canal de distribución, etc. Las dimensiones son almacenadas en tablas satélites que están unidas a las tablas de hechos.

Figura 2. Cubo con Dimensiones de Regio, Product, Time.
Las tablas de dimensiones almacenan toda la información asociada con cada dimensión particular, esto incluye:

- Las relaciones de jerarquías de cada dimensión.
- Los atributos que describen cada dimensión.

Las dimensiones están formadas por tres componentes claves:

4.1.10.5 Jerarquías

Las jerarquías son estructuras lógicas que agrupan datos pertenecientes a una dimensión con el propósito de analizarlos por ejemplo: si se considera una escala (o dimensión) temporal "Enero de 2013" se puede incluir en "Primer Trimestre de 2013", que a su vez se incluye en "Año 2013".

Figura 3. Niveles jerárquicos de dimensión

4.1.10.6 Niveles

Los niveles representan una posición en una jerarquía. El nivel superior contiene una agregación de valores para el nivel inferior. Cada nivel tienen una relación uno a muchos o maestro detalle con su nivel inferior. Por ejemplo, una medida de ventas puede encontrarse en la jerarquía de productos y en un nivel superior en categoría de productos o sub categorías, etc.
4.1.10.7 Atributos

Los atributos proveen información descriptiva acerca de los datos y son de utilidad cuando se seleccionan datos para el análisis por ejemplo:

- Selección de productos Tamaño: Grande.
- Selección de clientes Color: Rubio.

<table>
<thead>
<tr>
<th>Niveles</th>
<th>Atributos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Todos Productos</td>
<td>Categoría</td>
</tr>
<tr>
<td>camisa</td>
<td>Hombre</td>
</tr>
<tr>
<td>Mujer</td>
<td>Blusa corta</td>
</tr>
<tr>
<td>Niño</td>
<td>Camisa corta</td>
</tr>
<tr>
<td>pantalon</td>
<td>Largo</td>
</tr>
<tr>
<td>Corto</td>
<td>Pantalón negro</td>
</tr>
</tbody>
</table>

Tabla 2. Tabla de especificación de una dimensión
4.1.10.8 Drill Down y Roll Up

Son técnicas analíticas específicas por las cuales los usuarios navegan entre niveles de detalle de información, desde la más resumida hasta la más detallada, en el caso del Drill Down y del detalle hacia el resumen el Roll Up. Las jerarquías de la dimensión son las que establecen los caminos por los cuales los usuarios podrán hacer tanto un Drill Down como un roll-up, esto debido a que la jerarquía o jerarquías de la dimensión contienen los niveles de la misma. Un ejemplo una dimensión de Tiempo muestra los Años al hacer Drill Down, nos mostrara

4.1.11 Esquemas de Cubos

Un esquema es una colección de objetos de base de datos (tablas, vistas, índices, sinónimos, etc.) existen dos tipos comunes de esquemas de cubo: en estrella y en copo de nieve.

4.1.11.1 Esquema Copo Nieve

Las Base de datos relacionales a menudo emplean esquema copo de nieve para proporcionar los mejores tiempos de respuesta posibles a las consultas complejas. Los esquemas de copo de nieve contienen una tabla de hechos central sin normalizar para el tema y numerosas tablas de dimensión para la información descriptiva sobre las dimensiones del tema. La tabla de hechos puede contener varios millones de filas. La información a la que se tiene acceso con más frecuencia se agrega previamente y se resume para mejorar aún más el rendimiento.

Si bien el esquema de copo de nieve se considera fundamentalmente una herramienta con la que el administrador de bases de datos puede aumentar el rendimiento y simplificar el diseño del almacén de datos, también se utiliza para representar la información del almacén de datos de forma que tenga más sentido para los usuarios finales.

Suele aplicarse cuando muchos atributos caracterizan a los niveles más altos de jerarquías.

Se puede elegir el normalizar solo algunas dimensiones y otras no, aumentando así la complejidad del diseño y metadatos.
El inconveniente es que al aumentar el número de tablas algunos requisitos pueden demorar en exceso.

4.1.11.2 Esquema Estrella

En el esquema estrella, una sola tabla de hechos está relacionada a cada tabla de dimensión. Las tablas de dimensiones son enlazadas a la tabla de hechos mediante referencias de una llave foránea. La llave primaria en la tabla de hechos se compone de una relación de las llaves primarias de las tablas de dimensiones. El esquema en estrella puede ser redefinido en el esquema copo de nieve con un soporte para jerarquía de atributos, partiendo que las tablas de dimensiones tenga tablas de dimensiones.
5 Definición de requerimientos

5.1 Especificación de requerimientos

Especificación detallada de los requerimientos funcionales, de los cuales tienen que ser de forma óptima para el cumplimiento de las necesidades.

Los requerimientos están enfocados a los procesos de carga y descarga cuál es poseen datos transversales a través de todas las áreas de la empresa. Siempre visto desde la necesidad de poder llevar a cabo análisis multidimensional.

5.1.1 Requerimientos funcionales

<table>
<thead>
<tr>
<th>Obtener datos de varias fuentes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descripción: Existe mucha fuente de datos para la cual hay un costo de tiempo humanos en su recolección es por eso que se necesita un proceso automatizado de la obtención de estos. Generar contratos de obtención de datos con usuarios de otras áreas. Que participen de un plan de carga para poder lograr que sea un Data Warehouse más robusto en cuanto a información.</td>
</tr>
<tr>
<td>Objetivo: Tener una fuente de datos a partir de múltiples fuentes, que sea robusta y que permita consultas más eficientes. Tener datos relevantes a la necesidad.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Generar proceso ETL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descripción: Existen muchas fuentes de datos dentro de la organización, en las cuales muchos datos significan lo mismo, pero poseen una nomenclatura diferente, Se necesita ajustar estos datos para que todos ellos posean el mismo nombre, como un miembro datos de fechas con obras pasando segundos a horas, o generando nuevos datos a partir de datos, los cuales poseen información relevante.</td>
</tr>
<tr>
<td>Objetivo: Es importante que el DW, posea datos consistentes de acuerdo a lo que se necesita entregar a través de sus cubos de análisis multidimensional, es por eso que es muy importante la generación de este proceso, el cual entrega una mayor claridad de los datos entregados.</td>
</tr>
</tbody>
</table>

Accesar información de movimiento de materiales

Descripción: Realizar análisis de proceso de descarga, se necesita el conocimiento de todas sus instancias, al igual que todas las medidas que pudieran. Se necesita poder examinar cada característica del proceso. Estos son los orígenes y destinos, los operadores, los equipos de carguío y transporte, los tipos de materiales, y la entrega de resultados en todas las combinaciones de los movimientos de materiales entre orígenes y destinos. Además el sistema debe incluir las leyes de todos los tipos de materiales. También debe permitir el análisis desde turnos (día y noche) diarios hasta Años y también que muestre el número de maquinaria que se utilice, ya sea de carguío y transporte.

Objetivo: Obtener análisis desde cualquier punto de vista posible y tener respuesta inmediata de estos análisis, recorriendo a través de sus dimensiones del tiempo, para poder generar gráficos que representen el comportamiento, y poder generar soluciones en corto tiempo.

Accesar información de registro de estados

Descripción: Realizar análisis de proceso de carga, se necesita el conocimiento de todas sus instancias, al igual que todas las medidas que pudieran. Se necesita poder examinar cada característica del proceso. Estos son los orígenes y destinos, los operadores, los equipos de carguío y transporte, y la entrega de resultados en todas las combinaciones de los movimientos de materiales entre orígenes y destinos. Además poder consultar rendimientos, utilización y disponibilidad de cualquiera de sus equipos, flota y sus subdivisiones en alguna alternativa de agrupación de tiempo, ya sea por año, meses, días, turnos, semana, semestre, trimestre, cuatrimestre. Además de poder obtener los tiempos de ciclo de los equipos de carguío y transporte. Y toda la gama de obras referentes a la operación y no operación, a las mansiones y otro tipo asociados. Disponiendo de estos datos tanto en promedios como en la sumatoria.

Objetivo: Análisis de cualquier punto de vista, y que me entregue opción de realizar de la forma que se estime conveniente. Agrupar información de acuerdo a lo requerido (promedio mes, sumas por mes, etc.). Se pueda generar gráficos con cualquier despliegue de este tipo de análisis.
El reporte a través de minería de datos

Descripción: Análisis del tanto del punto de vista predictivo y descriptivo. En la cual a través de la generación de modelos de minería datos poder obtener conocimiento por parte de la información que ya tenemos. Es por esto que desde nuestro análisis entregado a través de nuestra planilla Excel sea posible generar nuevos modelos de minería de datos y también genera respuesta a través del la consulta

Objetivo: Generar modelos a través de datos históricos procedentes de nuestros cubos de análisis de datos. El cual me entregue respuestas consistentes y avaladas de acuerdo a nuestra información.

5.1.2 Requerimientos de hardware

5.1.2.1 Requerimientos de hardware del servidor

El sistema para mantener un acorde funcionamiento necesitará el siguiente requerimiento mínimo de hardware.

<table>
<thead>
<tr>
<th>Componente</th>
<th>Mínimo</th>
<th>Se recomienda</th>
</tr>
</thead>
<tbody>
<tr>
<td>Procesador</td>
<td>Procesador dual básico de 64 bits, a 3 GHz</td>
<td>Servidores de cuatro núcleos</td>
</tr>
<tr>
<td>RAM</td>
<td>8 gigabytes de RAM</td>
<td>64 gigabytes de RAM</td>
</tr>
<tr>
<td>Almacenamiento</td>
<td>Almacenamiento de 80 gigabytes</td>
<td>80 gigabytes o más</td>
</tr>
</tbody>
</table>

5.1.2.2 Requerimientos de software para el servidor

<table>
<thead>
<tr>
<th>Software necesario</th>
<th>Se requiere</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proveedor OLE DB de Analysis Services (MSOLAP100.DLL), versión del archivo <10.50.númeroDeCompilación>.</td>
<td>Servicios de Excel, en un servidor de aplicaciones que carezca de PowerPivot para SharePoint</td>
<td>La versión para SQL Server 2008 R2 del proveedor de OLE BD es necesaria para las conexiones de datos a los libros PowerPivot cargados en los</td>
</tr>
<tr>
<td>servidores de PowerPivot.</td>
<td>Microsoft Analysis Services ADOMD.NET</td>
<td>Administración central, cuando se ejecuta como aplicación independiente en servidor front-end web.</td>
</tr>
</tbody>
</table>

5.1.2.3 Requerimiento de hardware y software del usuario

<table>
<thead>
<tr>
<th>Componente</th>
<th>Mínimo</th>
<th>Se recomienda</th>
</tr>
</thead>
<tbody>
<tr>
<td>Procesador</td>
<td>Procesador dual básico de 32 bits, a 2 GHz</td>
<td>Cuatro núcleos</td>
</tr>
<tr>
<td>RAM</td>
<td>4 gigabytes de RAM</td>
<td>8 gigabytes de RAM</td>
</tr>
<tr>
<td>Almacenamiento</td>
<td>Almacenamiento de 80 gigabytes</td>
<td>80 gigabytes o más</td>
</tr>
</tbody>
</table>

Los equipos deben ser aceptados por 1Desktop de IBM. También se necesita que se encuentre instalado el software Excel con el add-in para minería de datos.
5.1.3 Requisito no funcionales

- **Fácil de usar**

 Tiempo de instrucción para los usuarios:
 - 16 horas para el administrador.
 - 12 horas para los usuarios.

- **Estable**

 En un lapsus de 2 meses no posea más de 10 errores

- **Confiable**

 La información entregada será fidedigna de acuerdo a los datos entregados por el usuario y el correcto funcionamiento del sistema.

- **Rendimiento**

 Que los rendimientos sean óptimos de acuerdo al sistema, los tiempos de respuesta del sistema no sea mayor a 10 segundos.

- **Mantenible y de controlado crecimiento**

 Que pueda ser reacondicionado de acuerdo a como cambie los requerimientos y pueda ir creciendo en forma gradual.

Organizacionales

- El usuario debe usar los datos como continuos para el análisis en minería de datos ya que reflejan una mayor realidad.
- No se pueden utilizar los cubos de análisis en el periodo de recarga y retroceso de los datos, ya representa la actualización más aproximada a la operación.
• El sistema refleja sólo los datos están contenidos en la fuente datos accesados.

Externos

• Mantener conexión con la base de datos del Data Warehouse
• Sólo se puede acceder a los datos estando conectado a la red de BHP Billiton
6 ESTUDIO DE FACTIBILIDAD

6.1 Factibilidad técnica

Proceso desarrolladores

Para la construcción de este proyecto se necesita las siguientes especificaciones tanto de hardware como el software.

Recurso de hardware

Los recursos de hardware óptimos para desarrollar en este sistema se especifican en la siguiente tabla.

<table>
<thead>
<tr>
<th>Componente</th>
<th>Optimo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Procesador</td>
<td>Servidores de 4 núcleos</td>
</tr>
<tr>
<td>RAM</td>
<td>8 gigabytes de RAM</td>
</tr>
<tr>
<td>Almacenamiento</td>
<td>80 terabytes.</td>
</tr>
<tr>
<td>R.ed</td>
<td>10/100 Mbps</td>
</tr>
</tbody>
</table>

Recurso de software

Para poder construir este sistema se necesita lo siguiente software para su desarrollo.

<table>
<thead>
<tr>
<th>Sistema operativo</th>
<th>Windows server 2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software base de datos</td>
<td>SQL server 2008 R2</td>
</tr>
<tr>
<td>Software Business Inteligence</td>
<td>Microsoft analysis services</td>
</tr>
<tr>
<td>Software ETL</td>
<td>Microsoft integration services</td>
</tr>
<tr>
<td>Software de desarrollo</td>
<td>Microsoft powerview</td>
</tr>
<tr>
<td>Software de explotación de datos</td>
<td>Microsoft Office 2010 más addin</td>
</tr>
</tbody>
</table>

Para la realización de este sistema los desarrolladores deben poseer niveles de conocimientos en el software.
<table>
<thead>
<tr>
<th>Software</th>
<th>Muy bajo</th>
<th>bajo</th>
<th>medio</th>
<th>alto</th>
<th>muy alto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows server 2010</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>SQL server 2008 R2</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Microsoft analysis services</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microsoft integration services</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microsoft powerview</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Microsoft Office 2010 más addin</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

Niveles de requerimiento para poder generar los cubos de análisis multidimensional

<table>
<thead>
<tr>
<th>Especificaciones</th>
<th>Muy bajo</th>
<th>bajo</th>
<th>medio</th>
<th>alto</th>
<th>muy alto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interpretar requerimientos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Modelo de datos</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Lenguaje SQL</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Lenguaje MDX</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Lenguaje MXD</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Diagramas UML</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Business Intelligence</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

Proceso de implementación

Para la ejecución de este sistema debe contar con los recursos mínimos

Recurso hardware

<table>
<thead>
<tr>
<th>Procesador</th>
<th>doble núcleos</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAM</td>
<td>4 gigabytes de RAM</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>Almacenamiento</td>
<td>156 gigabytes o más</td>
</tr>
<tr>
<td>Red</td>
<td>10/100 Mbps</td>
</tr>
</tbody>
</table>

*Equipo entregado por 1Desktop de IBM

Recurso software

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sistema operativo</td>
<td>Windows 7 64 bits</td>
</tr>
<tr>
<td>Acceso cubos</td>
<td>Microsoft Office 2010</td>
</tr>
<tr>
<td>Acceso a datos</td>
<td>SQL server management estudio</td>
</tr>
</tbody>
</table>

Niveles de dominio

Para la realización de este proyecto los usuarios deben tener conocimientos mínimos.

Dominio y experiencia en el uso del computador

<table>
<thead>
<tr>
<th>Cliente</th>
<th>Muy bajo</th>
<th>Bajo</th>
<th>Medio</th>
<th>Alto</th>
<th>Muy alto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administrador</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Usuario</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

Dominio y experiencia en el uso de sistemas computacionales

<table>
<thead>
<tr>
<th>Cliente</th>
<th>Muy bajo</th>
<th>Bajo</th>
<th>Medio</th>
<th>Alto</th>
<th>Muy alto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administrador</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Usuario</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

Recursos del servidor

Para poder implementar el servidor y obtenga un óptimo funcionamiento del sistema, éste deberá contar con los siguientes requerimientos.
Recurso de hardware

<table>
<thead>
<tr>
<th>Procesador</th>
<th>Servidores de 128 núcleos</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAM</td>
<td>164 gigabytes de RAM</td>
</tr>
<tr>
<td>Almacenamiento</td>
<td>80 terabytes.</td>
</tr>
<tr>
<td>R.ed</td>
<td>10/100 Mbps</td>
</tr>
</tbody>
</table>

*Con una réplica del servidor en dos partes del mundo

Recurso de software

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows server 2010</td>
<td></td>
</tr>
<tr>
<td>Microsoft SQL server 2008 R2</td>
<td></td>
</tr>
<tr>
<td>Microsoft Office 2010</td>
<td></td>
</tr>
</tbody>
</table>

Conclusión factibilidad técnica

Dado que la anterior mencionamos encuentra todo en la empresa y los servicios subcontratados para la puesta en marcha de este proyecto, este es factible técnicamente en todos sus ámbitos.

Se puede concluir que este proyecto es factible técnicamente.

6.2 Factibilidad operativa

La factibilidad operativa refleja que este nuevo sistema sea usado de forma óptima, en esto nos enfocamos en cuatro aspectos. Un nuevo sistema no puede ser complejo para los usuarios. La sensación de incomprensión y temor al verse enfrentado a un nuevo sistema. No hay imitación puede generar cambios drásticos, impidiendo que los usuarios quieran aceptar este cambio y alejarse de él. Y por último el sistema se vuelva obsoleto en un corto tiempo.
Para poder reflejar la factibilidad operativa enfocado en los cuatro aspectos anteriores mencionados se ha constituido dos tablas que muestran la encuesta aplicada a los usuarios.

Encuesta cambio de sistema

A: muy desacuerdo
B: desacuerdo
C: indiferente
D: de acuerdo
E: muy de acuerdo

<table>
<thead>
<tr>
<th>Pregunta</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>¿Disminuirán los tiempos de consulta?</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>¿Estaba adaptado a trabajar con tabla dinámica?</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>¿Confía trabajar con Excel?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>¿La facilidad de consulta y análisis? Permitirá una buena toma de decisión</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>¿Disminuir los tiempos de preparación de datos? aumentar tiempos para análisis</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>¿La capacitación será un proceso complicado?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Encuesta de conocimientos computacionales

Número de usuarios: 6

<table>
<thead>
<tr>
<th>software</th>
<th>Nulo</th>
<th>Insuficiente</th>
<th>Suficiente</th>
<th>Bueno</th>
<th>Excelente</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microsoft Excel</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Sistema operativo Windows</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>--------------------------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>Programa herramientas gráficas</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Administración de base de datos</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Programa herramientas matemáticas</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Procesador de texto</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Uso de tablas dinámicas</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Resultado encuesta conocimiento computacional

Dominio Microsoft Excel: el 33% de los usuarios posee conocimiento suficiente de este software, 50% posee un buen manejo y 17% posee un manejo excelente. No existen usuarios que nos separan de este software o no posea conocimientos sobre él.

![Dominio Microsoft Excel](Gráfico 1. Dominio Microsoft Excel)

Conclusión: claramente el resultado del dominio de Microsoft Excel está sobre la media, y no existen personas que no tengan conocimiento sobre debido que están en constantemente trabajo con este software es una herramienta ideal para trabajar sobre ella en el acceso de datos al cubo multidimensional. Existen otras
herramientas basadas en hoja de cálculo, pero no han sido tomadas en cuenta debido que necesitan la autorización de 1Desktop de IBM.

Dominio Sistema operativo Windows: el 83% de los usuarios posee un conocimiento suficiente sobre el sistema operativo Windows y un 17% posee un conocimiento excelente respecto este sistema operativo.

![Diagrama Dominio Sistema Operativo Windows](image)

Gráfico 2. Dominio Sistema Operativo Windows

Conclusión: es el sistema operativo por obligación a usar dentro de la empresa, se omitió en la encuesta el conocimiento de otros sistemas operativos. Éste es el único autorizado por 1Desktop de IBM.

Dominio programas herramientas gráficas: el 50% de los usuarios posee un conocimiento suficiente respecto al programa herramientas gráficas, un 33% se declaran con un conocimiento bueno y un 17% posee un conocimiento excelente respecto a estos software.
Dominio administración base de datos: existe un 33% de usuarios que no tienen conocimiento sobre administración de base de datos, debido a que son personas que nunca están involucrados a esas tecnologías, un 17% posee un leve conocimiento o suficiente respecto este tipo de software y un 17% posee un excelente conocimiento sobre este tipo de software.

Dominio programa herramientas matemáticas: existe un 67% con un conocimiento suficiente sobre programas herramientas matemáticas y 33% de los usuarios posee un conocimiento bueno sobre estos tipos de software, no existen
usuarios que no tengan conocimiento sobre programas herramientas matemáticas, todos han usado con frecuencia este tipo de software.

![Gráfico 5. Dominio programa herramientas matemáticas](image)

Dominio procesador de textos: todos los días deben usar los procesadores de texto es por eso que es obligación del 100% de los usuarios tienen conocimiento de una manera bastante buena.

![Gráfico 6. Dominio procesador de textos](image)
Dominio uso de tablas dinámicas: un 83% posee un nivel bueno en conocimiento respecto al uso de tablas dinámicas y un 17% posee un conocimiento excelente, debido a que son muy utilizada para el análisis de datos.

![Uso de tablas dinámicas](image)

Gráfico 7. Dominio uso de tablas dinámicas.

Conclusión factibilidad operativa

Para la realización de este proyecto se posee todo el apoyo que se necesite disponer, ya que para la empresa está al tanto de todos los beneficios que se pueden obtener, y estos son superior al proceso adaptación, el cual no es tan complicado debido que las herramientas seleccionadas ya han sido utilizada por los usuarios, disminución del tiempo procesamiento, disminución de los errores humanos, todo esto se deberá reflejado en la calidad de responsabilidad.

Los usuarios posee un completo interés sobre el uso de este nuevo sistema por los beneficios que conlleva, la capacitación no será muy complicada con ella conocimiento de las herramientas de software.

Por lo cual se puede concluir que este proyecto es factible operacionalmente.
6.3 Factibilidad económica

Para analizar factibilidad económica del proyecto, utilizaremos el van (valor actual Neto) durante un periodo de tres años, el cual nos indicaría un monto expresado en una ganancia.

Ingresos

Ahorro en HH extraordinarias

Se refleja en una tabla los costos actuales de los funcionarios, los cuales presentes en la organización, Calculado en base a sueldo aproximado y su carga horaria.

<table>
<thead>
<tr>
<th>Detalle</th>
<th>Por hora</th>
<th>por mes</th>
<th>por años</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costo funcionario</td>
<td>12,000</td>
<td>1,008,000</td>
<td>12,096,000</td>
</tr>
<tr>
<td>Costo hora extra</td>
<td>24,000</td>
<td>144,000</td>
<td>2,736,000</td>
</tr>
<tr>
<td>Total anual</td>
<td></td>
<td></td>
<td>14,832,000</td>
</tr>
</tbody>
</table>

Los valores de los empleados se calculan en base a la siguiente jornada

<table>
<thead>
<tr>
<th>Detalle</th>
<th>Turno 7 × 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Día por mes</td>
<td>14</td>
</tr>
<tr>
<td>Horas laborales</td>
<td>12</td>
</tr>
<tr>
<td>Horas extras al mes</td>
<td>12</td>
</tr>
<tr>
<td>Horas al mes(sin extras)</td>
<td>168</td>
</tr>
<tr>
<td>Total horas mensuales(con extras)</td>
<td>180</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Detalle</th>
<th>Turno 4 x 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Día por mes</td>
<td>16</td>
</tr>
<tr>
<td>Horas laborales</td>
<td>12</td>
</tr>
<tr>
<td>Horas extras al mes</td>
<td>0</td>
</tr>
<tr>
<td>Horas al mes(sin extras)</td>
<td>192</td>
</tr>
<tr>
<td>Total horas mensuales(con extras)</td>
<td>192</td>
</tr>
</tbody>
</table>

A continuación se realizó la misma tabla, pero ya con los costos que se obtendrían con el sistema instalado, obteniendo así los siguientes objetivos:
Reducir los tiempos de preparación de los datos
Reducir las fallas humanas
Obtener los datos de una fuente unificada

No se logran reducir las horas extras debido que éstas están enfocadas en los días feriados pero si existe una reducción del 70% a 90% en la preparación de los datos.

<table>
<thead>
<tr>
<th></th>
<th>Por hora</th>
<th>por mes</th>
<th>por años</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costo funcionario</td>
<td>12,000</td>
<td>100,800</td>
<td>1,209,600</td>
</tr>
<tr>
<td>Por</td>
<td>24,000</td>
<td>14,400</td>
<td>172,000</td>
</tr>
<tr>
<td>Total anual</td>
<td></td>
<td></td>
<td>1,381,600</td>
</tr>
</tbody>
</table>

Como se puede ver excepcional producción de costos en funcionarios de $13,450,400 anuales por funcionario.

La empresa cuenta con tres funcionarios dedicados a esto, es decir que se ve reflejado un ahorro de $40,351,200 anuales.

Insumos

No existen un costo asociado a insumos, ya que estos no sufren una variación respecto a la organización antes y después de la puesta en marcha del proyecto.

Movilización

No existe un costo asociado a movilización, ya que esto no sufren una variación respecto a la organización antes y después de la puesta en marcha de este proyecto.
Egresos

Desarrollo

Para poder calcular el costo del desarrollo del proyecto, las funciones que se realizarán en las diferentes etapas, analizando el tipo de profesionales que se necesitan para poder cumplir con estas.

Continuación se nombran los profesionales que se necesita:

Analista de sistema: es el encargado de coordinar, planificar, investigar y recomendar el tipo de software y sistemas para cumplir los requerimientos.

Ingeniero de Business Intelligence: es el encargado de crear, diseñar, planificar e implementar el proyecto.

El costo asociado sueldo diario por cada profesional que se siguen:

<table>
<thead>
<tr>
<th>Profesional</th>
<th>Sueldo mensual</th>
<th>Sueldo diario</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Analista de sistema:</td>
<td>400,000</td>
<td>13,300</td>
</tr>
<tr>
<td>B Ingeniero de Business Intelligence</td>
<td>1,600,000</td>
<td>50,300</td>
</tr>
</tbody>
</table>

El siguiente caso se identifican los profesionales en cada etapa del proyecto calculando el costo por cada uno de ellos:

<table>
<thead>
<tr>
<th>Días</th>
<th>Etapa</th>
<th>Profesionales</th>
<th>Gastos sueldos total etapa</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Propuesta proyecto</td>
<td>B</td>
<td>754,500</td>
</tr>
<tr>
<td>15</td>
<td>Definición de requerimientos</td>
<td>A-B</td>
<td>954,000</td>
</tr>
<tr>
<td>10</td>
<td>Estudio de factibilidad</td>
<td>A-B</td>
<td>636,000</td>
</tr>
<tr>
<td>10</td>
<td>Especificación de requerimientos</td>
<td>A-B</td>
<td>636,000</td>
</tr>
<tr>
<td>10</td>
<td>Análisis</td>
<td>A-B</td>
<td>636,000</td>
</tr>
<tr>
<td>20</td>
<td>Diseño</td>
<td>A-B</td>
<td>1,272,000</td>
</tr>
</tbody>
</table>
Costo total asociado al desarrollo del proyecto es de un valor de $7,750,500.

Mantención

El sistema si necesitan mantención a través del tiempo, pero existen funcionarios que se harán cargo a través del tiempo, es por eso que no se incurrirá en ningún gasto adicional.

Aumento con su eléctrico

El sistema no considera ningún aumento del consumo eléctrico, ya que los servidores se encuentran fuera de la organización. Es por esto que no son consideradas ya que no afectan de manera económica al proyecto.

Aumento personal

El sistema será utilizado por personal permanente de la organización, y está enfocado en la nueva contratación o despido de personal existen.

Depreciación

No se considera depreciación ya que no hay compra de equipos, con el hardware y software existente ya es suficiente para poder llevar a cabo el proyecto, es por eso que el valor residual y la depreciación es $0.

Una vez analizado todos los factores influyentes del proyecto para determinar factibilidad económica, sea por inicio el cálculo del VAN.
<table>
<thead>
<tr>
<th>Descripción</th>
<th>Inversión</th>
<th>Año 1</th>
<th>Año 2</th>
<th>Año 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahorro en HH extraordinarias</td>
<td>12096000</td>
<td>12096000</td>
<td>12096000</td>
<td></td>
</tr>
<tr>
<td>Ahorro en insumos</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Ahorro movilización</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>(-) Desarrollo</td>
<td>3600000</td>
<td>7750500</td>
<td>7750500</td>
<td>7750500</td>
</tr>
<tr>
<td>(-) Mantención y soporte</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>(-) Aumentó el consumo eléctrico</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>(-) Aumento de personal</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Utilidad operativa</td>
<td>4345500</td>
<td>4345500</td>
<td>4345500</td>
<td></td>
</tr>
<tr>
<td>(-) Depreciación</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Utilidad antes de impuestos</td>
<td>4345500</td>
<td>4345500</td>
<td>4345500</td>
<td></td>
</tr>
<tr>
<td>(-) Impuestos 17%</td>
<td>738735</td>
<td>738735</td>
<td>738735</td>
<td></td>
</tr>
<tr>
<td>Utilidad después de impuesto</td>
<td>3606765</td>
<td>3606765</td>
<td>3606765</td>
<td></td>
</tr>
<tr>
<td>Depreciación</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Valor residual</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Utilidad del periodo</td>
<td>3606765</td>
<td>3606765</td>
<td>3606765</td>
<td></td>
</tr>
</tbody>
</table>

\[
VAN = \text{inversión inicial} + \frac{Flujo Año 1}{(1 + 0, 1)^1} + \frac{Flujo Año 2}{(1 + 0, 1)^2} + \frac{Flujo Año 3}{(1 + 0, 1)^3}
\]

\[
VAN = - \$3,600,000 + \$3,606,765 + \$3,525,697 + \$3,500,690
\]

VAN total del proyecto = $7,033,152

Conclusión factibilidad económica

Podemos concluir que el proyecto a través de su factibilidad económica, expresando costos y beneficios a través del cálculo VAN, es que nos entrega un cálculo positivo.

Por lo tanto podemos concluir que este proyecto es factible económicamente.

Conclusiones de estudio de factibilidad

Como se muestra en un estudio realizado a través de la factibilidad técnica, factibilidad operativa y factibilidad económica podemos concluir que este proyecto es factible en todos sus ámbitos, es decir este proyecto es posible de realizar.
7 Análisis

7.1 Contexto del sistema

"Existen dos aproximaciones para expresar el contexto del sistema en una forma utilizable para desarrolladores de software: el modelo del dominio y el modelo del negocio". [7]

El desarrollo de este proyecto se analizará el modelo del dominio que está basado en los procesos de carga y descarga, el cual está reflejado en los temas transaccionales de la mina, los que forman parte del proceso de producción de cátodos de cobre. El cual está basado en el ciclo de producción de BHP Billiton.

7.2 Modelo del dominio

"Un modelo del dominio captura los tipos más importante de objetos en el contexto del sistema. Los objetos del dominio representa las cosas que existen o los eventos que sucede en el tono en que trabaja el sistema". [7]

En la tabla siguiente contiene el modelo de dominio el cual muestra los objetos y atributos, estos identificados a partir de los requerimientos funcionales. En el contexto de un Data Warehouse estos están representados en hechos y dimensiones

<table>
<thead>
<tr>
<th>ID</th>
<th>Clase</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>Cargas</td>
<td>Representa los hechos generados a consecuencia de todas las cargas de materiales realizados dentro de la mina; toneladas, leyes, rendimientos, utilización.</td>
</tr>
<tr>
<td>H2</td>
<td>Descargas</td>
<td>Representa los hechos generados a consecuencia de las descargas de materiales realizados dentro de la mina; toneladas, movimientos de materiales, tipo de movimientos de materiales.</td>
</tr>
</tbody>
</table>
7.3 Identificación de los actores

"Un actores representa un rol que es jugado por una persona, un dispositivo de hardware o incluso otro sistema al interactuar con nuestro sistema".[8]

Los actores que se identifican Data Warehouse son los siguientes:
Usuario

Son las personas que van hacer uso de este sistema, ellos son los que reciben una decisión de requerimientos para análisis de datos los cuales al consultar al sistema que ellos elaboran una solución a medida.
El usuario tiene los privilegios sólo de consulta de datos, es decir él no puede modificar sobre escribir sobre ellos.
Poseen conocimientos de uso de planillas de cálculo, acceso a bases de datos, el uso de tablas dinámicas y gráficos dinámicos.

Administrador

El encargado de supervisar y mantener las bases de datos, el proceso ETL, seleccionar y utilizar las fuentes de datos.

Business Intelligence

Es el encargado de recolectar los requisitos y poder diseñar los modelos multidimensionales, de los cuales se crean los cubos de datos.

7.4 Caso de Uso

“Un caso de uso es una secuencia de interacciones entre un sistema y alguien o algo que usa alguno de sus Servicios”. [9] En esta sección se identifican los casos de uso para el Data Warehouse que identifica la información que será consultada.
7.4.1 Identificación de casos de uso

Se identifican y codifican los casos de uso

<table>
<thead>
<tr>
<th>Numero</th>
<th>Caso de Uso</th>
</tr>
</thead>
<tbody>
<tr>
<td>CU01</td>
<td>Mostrar Histórico de Movimiento de Materiales</td>
</tr>
<tr>
<td>CU02</td>
<td>Mostrar Histórico de Movimiento de Materiales por Equipo de Carguío</td>
</tr>
<tr>
<td>CU03</td>
<td>Mostrar Histórico de Movimiento de Materiales por Equipo de Transporte</td>
</tr>
<tr>
<td>CU04</td>
<td>Mostrar Histórico de Leyes de Materiales</td>
</tr>
<tr>
<td>CU05</td>
<td>Mostrar Histórico de Leyes de Materiales por Tipo de Material</td>
</tr>
<tr>
<td>CU06</td>
<td>Mostrar Histórico de Leyes de Materiales por Destino</td>
</tr>
<tr>
<td>CU07</td>
<td>Mostrar Histórico de Leyes de Materiales por Origen</td>
</tr>
<tr>
<td>CU08</td>
<td>Mostrar Histórico de Rendimiento, Utilización, Disponibilidad</td>
</tr>
<tr>
<td>CU09</td>
<td>Mostrar Histórico de Rendimiento, Utilización, Disponibilidad por Equipo de Transporte</td>
</tr>
<tr>
<td>CU10</td>
<td>Mostrar Histórico de Rendimiento, Utilización, Disponibilidad por Equipo de Carguío</td>
</tr>
<tr>
<td>CU11</td>
<td>Mostrar Probabilidad del uso de numero de Palas-Cargador-Camión</td>
</tr>
<tr>
<td>CU12</td>
<td>Programar Tarea Data Warehouse</td>
</tr>
<tr>
<td>CU13</td>
<td>Ejecutar Carga de Datos</td>
</tr>
<tr>
<td>CU14</td>
<td>Crear Modelo Data Mining</td>
</tr>
<tr>
<td>CU15</td>
<td>Autentificar Solicitante</td>
</tr>
<tr>
<td>CU16</td>
<td>Mostrar Histórico de Horas, Detenciones, Mantención y Reserva</td>
</tr>
</tbody>
</table>

Identificación de los caso de uso

A continuación se describe el caso de uso agrupados de acuerdo a los principales hechos
CU01 Mostrar Histórico por Origen y destino

<table>
<thead>
<tr>
<th>Caso de Uso</th>
<th>Mostrar Histórico de Movimiento de Materiales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Id</td>
<td>CU01</td>
</tr>
<tr>
<td>Actores</td>
<td>Usuario</td>
</tr>
<tr>
<td>Precondición</td>
<td>El usuario debe tener permiso sobre los datos de movimiento materiales</td>
</tr>
<tr>
<td>Flujo Básico</td>
<td>• El caso de uso comienza cuando el Usuario cualquiera de las medidas que corresponden a los movimientos de materiales de la lista de dimensiones y medidas, haciendo doble clic o arrastrando a cualquiera de las áreas permitidas para dimensiones de la tabla dinámica.</td>
</tr>
<tr>
<td></td>
<td>• La tabla dinámica se actualiza mostrando los movimientos de materiales de las Descargas.</td>
</tr>
<tr>
<td></td>
<td>• El Usuario selecciona la dimensión del tiempo de la lista de dimensiones y medidas, haciendo doble clic o arrastrando a cualquiera de las áreas permitidas para dimensiones de la tabla dinámica.</td>
</tr>
</tbody>
</table>
La tabla dinámica se actualiza seleccionando la dimensión de tiempo.

El usuario utiliza las opciones presentadas por la tabla dinámica para construir el reporte de su preferencia en base a los datos de empleado mostrados.

<table>
<thead>
<tr>
<th>Posición</th>
<th>Ninguna</th>
</tr>
</thead>
<tbody>
<tr>
<td>Puntos de Extensión</td>
<td>Si el usuario elige los movimientos de materiales de las descargas por Equipos de Carguío se llamará al caso de uso "Mostrar movimientos de material por equipos de Carguío". Si el usuario elige los movimientos de materiales de las descargas por Equipos de Transporte se llamará al caso de uso "Mostrar movimientos de material por equipos de Transporte".</td>
</tr>
</tbody>
</table>

Diseño Lógico de Interface
CU02 Mostrar Histórico de Movimiento de Materiales por equipo de Carguío

Caso de Uso	Mostrar Histórico de Movimiento de Materiales por equipo de Carguío
Id | CU02
---|---
Actores | Usuario
Precondición | Ejecución del CU01
Flujo Básico
- El caso de uso comienza cuando el Usuario selecciona la dimensión de Equipos de Carguío de la lista de las dimensiones y medidas, haciendo doble clic o arrastrando a cualquiera de las áreas permitidas para dimensiones de la tabla dinámica.
- La tabla dinámica se actualiza mostrando los datos de la dimensión Equipo de Carguío con sus nombre unitario y/o clasificación de acuerdo al tipo o flota
- El Usuario utiliza las opciones presentadas por la tabla dinámica para construir el reporte de su preferencia en base a los datos de Descarga y área mostrados.
Pos condición | Ninguna
Puntos de Extensión | Ninguno

Diseño Lógico de Interface

![Diagrama de Interacción Global](image-url)
Diseño Físico Interface

CU03 MostrarHistórico de Movimiento de Materiales por equipo de Transporte

Caso de Uso

<p>| Caso de Uso | Mostrar Histórico de Movimiento de Materiales por equipo de Transporte |</p>
<table>
<thead>
<tr>
<th>Id</th>
<th>CU03</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actores</td>
<td>Usuario</td>
</tr>
<tr>
<td>Precondición</td>
<td>Ejecución del CU01</td>
</tr>
</tbody>
</table>
| Flujo Básico | • El caso de uso comienza cuando el Usuario selecciona la dimensión de Equipos de Transporte de la lista de las dimensiones y medidas, haciendo doble clic o arrastrando a cualquiera de las áreas permitidas para dimensiones de la tabla dinámica.
 • La tabla dinámica se actualiza mostrando los datos de la dimensión Equipo de Transporte con sus nombre unitario y/o clasificación de acuerdo al tipo o flota
 • El Usuario utiliza las opciones presentadas por la tabla dinámica para construir el reporte de su preferencia en base a los datos de Descarga y área mostrados. |
| Pos condición | Ninguna |
| Puntos de Extensión | Ninguno |

Diseño Lógico Interface

![Diagrama de Interacción Global](image)
Diseño Físico Interface

CU04 Mostrar Histórico de Leyes de Materiales

Mostrar Histórico de
Leyes de Materiales
por Destino

Mostrar Histórico de
Leyes de Materiales
por Origen

Mostrar Histórico de
Leyes de Materiales
por Tipo de Material

Autentifica al Solicitante

<<include>>

<<extend>>
<table>
<thead>
<tr>
<th>Caso de Uso</th>
<th>Mostrar Histórico de Leyes de Materiales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Id</td>
<td>CU04</td>
</tr>
<tr>
<td>Actores</td>
<td>Usuario</td>
</tr>
<tr>
<td>Precondición</td>
<td>El usuario debe tener permiso sobre los datos de Leyes materiales</td>
</tr>
</tbody>
</table>
| Flujo Básico| - El caso de uso comienza cuando el Usuario selecciona cualquiera de las medidas que corresponden a las Leyes de materiales de la lista de dimensiones y medidas, haciendo doble clic o arrastrando a cualquiera de las áreas permitidas para dimensiones de la tabla dinámica.
 - La tabla dinámica se actualiza mostrando los leyes de materiales de las Descargas.
 - El Usuario selecciona la dimensión del tiempo de la lista de dimensiones y medidas, haciendo doble clic o arrastrando a cualquiera de las áreas permitidas para dimensiones de la tabla dinámica.
 - La tabla dinámica se actualiza seleccionado la dimensión de tiempo.
 - El Usuario utiliza las opciones presentadas por la tabla dinámica para construir el reporte de su preferencia en base a los datos de empleado mostrados. |
| Pos condición| Ninguna |
| Puntos de Extensión| - Si el usuario elije las leyes de materiales de las descargas por Tipo de Material se llamará al caso de uso "Mostrar Historicico de Leyes de materiales por tipo de material".
 - Si el usuario elije las leyes de materiales de las descargas por Origen se llamará al caso de uso "Mostrar Historico de Leyes de materiales por Origen".
 - Si el usuario elije las leyes de materiales de las descargas por Destino se llamará al caso de uso "Mostrar Historico de Leyes de materiales por Destino". |
Diseño Lógico Interface

Diseño Físico Interface
Caso de Uso

CU05 Mostrar Histórico de Leyes de Materiales por Tipo de Material

<table>
<thead>
<tr>
<th>Caso de Uso</th>
<th>Mostrar Histórico de Leyes de Materiales por Tipo de Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Id</td>
<td>CU05</td>
</tr>
<tr>
<td>Actores</td>
<td>Usuario</td>
</tr>
<tr>
<td>Precondición</td>
<td>Ejecución del CU04</td>
</tr>
<tr>
<td>Flujo Básico</td>
<td>• El caso de uso comienza cuando el Usuario selecciona la</td>
</tr>
<tr>
<td></td>
<td>dimensión de Tipo de Materiales de la lista de las</td>
</tr>
<tr>
<td></td>
<td>dimensiones y medidas, haciendo doble clic o arrastrando</td>
</tr>
<tr>
<td></td>
<td>a cualquiera de las áreas permitidas para dimensiones</td>
</tr>
<tr>
<td></td>
<td>de la tabla dinámica.</td>
</tr>
<tr>
<td></td>
<td>• La tabla dinámica se actualiza mostrando los datos de la</td>
</tr>
<tr>
<td></td>
<td>dimensión Tipo de Materiales con sus nombre unitario y/o</td>
</tr>
<tr>
<td></td>
<td>clasificación de acuerdo al tipos</td>
</tr>
<tr>
<td></td>
<td>• El Usuario utiliza las opciones presentadas por la tabla</td>
</tr>
<tr>
<td></td>
<td>dinámica para construir el reporte de su preferencia en</td>
</tr>
<tr>
<td></td>
<td>base a los datos de Descarga y área mostrados.</td>
</tr>
</tbody>
</table>

| Pos condición | Ninguna |
| Puntos de Extensión | Ninguno |
Diseño Lógico Interface

Diseño Físico Interface
CU06 Mostrar Histórico de Leyes de Materiales por Destino

![Diagrama de uso](image)

<table>
<thead>
<tr>
<th>Caso de Uso</th>
<th>Mostrar Histórico de Leyes de Materiales por Destino</th>
</tr>
</thead>
<tbody>
<tr>
<td>Id</td>
<td>CU06</td>
</tr>
<tr>
<td>Actores</td>
<td>Usuario</td>
</tr>
<tr>
<td>Precondición</td>
<td>Ejecución del CU04</td>
</tr>
</tbody>
</table>
| Flujo Básico| • El caso de uso comienza cuando el Usuario selecciona la dimensión de Destinos de la lista de las dimensiones y medidas, haciendo doble clic o arrastrando a cualquiera de las áreas permitidas para dimensiones de la tabla dinámica.
• La tabla dinámica se actualiza mostrando los datos de la dimensión Destino con sus nombre unitario y/o clasificación de acuerdo al tipos
• El Usuario utiliza las opciones presentadas por la tabla dinámica para construir el reporte de su preferencia en base a los datos de Descarga y área mostrados. |
| Pos condición| Ninguna |
| Puntos de Extensión | Ninguno |
Diseño Lógico Interface

Diseño Físico Interface
CU07 Mostrar Histórico de Leyes de Materiales por Origen

<table>
<thead>
<tr>
<th>Caso de Uso</th>
<th>Mostrar Histórico de Leyes de Materiales por Origen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Id</td>
<td>CU07</td>
</tr>
<tr>
<td>Actores</td>
<td>Usuario</td>
</tr>
<tr>
<td>Precondición</td>
<td>Ejecución del CU04</td>
</tr>
</tbody>
</table>
| Flujo Básico| • El caso de uso comienza cuando el Usuario selecciona la dimensión de Origen de la lista de las dimensiones y medidas, haciendo doble clic o arrastrando a cualquiera de las áreas permitidas para dimensiones de la tabla dinámica.
 • La tabla dinámica se actualiza mostrando los datos de la dimensión Origen con sus nombre unitario y/o clasificación de acuerdo al tipos
 • El Usuario utiliza las opciones presentadas por la tabla dinámica para construir el reporte de su preferencia en base a los datos de Descarga y área mostrados. |
| Pos condición| Ninguna |
| Puntos de Extensión| Ninguno |
Diseño Lógico Interface

![Diagrama de Interacción Global]

Diseño Físico Interface

<table>
<thead>
<tr>
<th>Año 2005</th>
<th>Año 2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOT177SN</td>
<td>0,00204206</td>
</tr>
<tr>
<td>BOT177SN</td>
<td>0,062495362</td>
</tr>
</tbody>
</table>
CU08 Mostrar Histórico de Rendimiento, Utilización, Disponibilidad

<table>
<thead>
<tr>
<th>Caso de Uso</th>
<th>Mostrar Histórico de Rendimiento, Utilización, Disponibilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Id</td>
<td>CU08</td>
</tr>
<tr>
<td>Actores</td>
<td>Usuario</td>
</tr>
<tr>
<td>Precondición</td>
<td>El usuario debe tener permiso sobre los datos de Rendimiento, Utilización, Disponibilidad</td>
</tr>
</tbody>
</table>

Flujo Básico

- El caso de uso comienza cuando el Usuario selecciona cualquiera de las medidas que corresponden a Rendimiento, Utilización, Disponibilidad de la lista de dimensiones y medidas, haciendo doble clic o arrastrando a cualquiera de las áreas permitidas para dimensiones de la tabla dinámica.

- La tabla dinámica se actualiza mostrando Rendimiento, Utilización, Disponibilidad de las Cargas.

- El Usuario selecciona la dimensión del tiempo de la lista de dimensiones y medidas, haciendo doble clic o arrastrando a cualquiera de las áreas permitidas para dimensiones de la tabla dinámica.
• La tabla dinámica se actualiza seleccionado la dimensión de tiempo.

• El Usuario utiliza las opciones presentadas por la tabla dinámica para construir el reporte de su preferencia en base a los datos de empleado mostrados.

<table>
<thead>
<tr>
<th>Pos condición</th>
<th>Ninguna</th>
</tr>
</thead>
</table>
| Puntos de Extensión | • Si el usuario elige Rendimiento, Utilización, Disponibilidad de las Cargas por Equipo de Transporte se llamará al caso de uso "Mostrar Histórico de Rendimiento, Utilización, Disponibilidad por Equipo de Transporte".

• Si el usuario elige Rendimiento, Utilización, Disponibilidad de las Cargas por Equipo de Transporte se llamará al caso de uso "Mostrar Histórico de Rendimiento, Utilización, Disponibilidad por Equipo de Carguío".

Diseño Lógico Interface
CU09 Mostrar Histórico de Rendimiento, Utilización, Disponibilidad por Equipo Transporte

<table>
<thead>
<tr>
<th>Caso de Uso</th>
<th>Mostrar Histórico de Rendimiento, Utilización, Disponibilidad por Equipo Transporte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Id</td>
<td>CU09</td>
</tr>
<tr>
<td>Actores</td>
<td>Usuario</td>
</tr>
</tbody>
</table>
Precondición

- Ejecución del CU08

Flujo Básico

- El caso de uso comienza cuando el Usuario selecciona la dimensión de Equipo Transporte de la lista de las dimensiones y medidas, haciendo doble clic o arrastrando a cualquiera de las áreas permitidas para dimensiones de la tabla dinámica.

- La tabla dinámica se actualiza mostrando los datos de la dimensión Equipo de transporte con sus nombre unitario y/o clasificación de acuerdo al tipos

- El Usuario utiliza las opciones presentadas por la tabla dinámica para construir el reporte de su preferencia en base a los datos de Carga y área mostrados.

Pos condición

- Ninguna

Puntos de Extensión

- Ninguno

Diseño Lógico Interface

![Diagrama de Interacción Global](image-url)
Diseño Físico Interface

CU10 Mostrar Histórico de Rendimiento, Utilización, Disponibilidad por Equipo Carguío

<table>
<thead>
<tr>
<th>Caso de Uso</th>
<th>Mostrar Histórico de Rendimiento, Utilización, Disponibilidad por Equipo Carguío</th>
</tr>
</thead>
<tbody>
<tr>
<td>Id</td>
<td>CU10</td>
</tr>
<tr>
<td>Actores</td>
<td>Usuario</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Precondición</td>
<td>Ejecución del CU08</td>
</tr>
<tr>
<td>Flujo Básico</td>
<td></td>
</tr>
<tr>
<td>• El caso de uso comienza cuando el Usuario selecciona la dimensión de Equipo Carguío de la lista de las dimensiones y medidas, haciendo doble clic o arrastrando a cualquiera de las áreas permitidas para dimensiones de la tabla dinámica.</td>
<td></td>
</tr>
<tr>
<td>• La tabla dinámica se actualiza mostrando los datos de la dimensión Equipo de Carguío con sus nombre unitario y/o clasificación de acuerdo al tipos</td>
<td></td>
</tr>
<tr>
<td>• El Usuario utiliza las opciones presentadas por la tabla dinámica para construir el reporte de su preferencia en base a los datos de Carga y área mostrados.</td>
<td></td>
</tr>
<tr>
<td>Poscondición</td>
<td>Ninguna</td>
</tr>
<tr>
<td>Puntos de Extensión</td>
<td>Ninguno</td>
</tr>
</tbody>
</table>

Diseño Lógico Interface

![Diagrama de Interacción Global](attachment:diagrama.png)
Diseño Físico Interface

CU16 Mostrar Histórico de Horas, Detenciones, Mantención y Reserva

Solicita Autenticación

<<include>>
<table>
<thead>
<tr>
<th>Caso de Uso</th>
<th>CU16 Mostrar Histórico de Horas, Detenciones, Mantención y Reserva</th>
</tr>
</thead>
<tbody>
<tr>
<td>Id</td>
<td>CU16</td>
</tr>
<tr>
<td>Actores</td>
<td>Usuario</td>
</tr>
<tr>
<td>Precondición</td>
<td></td>
</tr>
<tr>
<td>Flujo Básico</td>
<td>• El caso de uso comienza cuando el Usuario selecciona las medidas de Horas, Detenciones, Mantención y Reserva de la lista de las dimensiones y medidas, haciendo doble clic o arrastrando a cualquiera de las áreas permitidas para dimensiones de la tabla dinámica.</td>
</tr>
<tr>
<td></td>
<td>• La tabla dinámica se actualiza mostrando los datos de Horas, Detenciones, Mantención y Reserva</td>
</tr>
<tr>
<td></td>
<td>• El caso de uso comienza cuando el Usuario selecciona la dimensión de Equipo Carguío de la lista de las dimensiones y medidas, haciendo doble clic o arrastrando a cualquiera de las áreas permitidas para dimensiones de la tabla dinámica.</td>
</tr>
<tr>
<td></td>
<td>• La tabla dinámica se actualiza mostrando los datos de la dimensión Equipo de Carguío con sus nombre unitario y/o clasificación de acuerdo al tipos</td>
</tr>
<tr>
<td></td>
<td>• El Usuario utiliza las opciones presentadas por la tabla dinámica para construir el reporte de su preferencia en base a los datos de Carga y área mostrados.</td>
</tr>
<tr>
<td>Pos condición</td>
<td>Ninguna</td>
</tr>
<tr>
<td>Puntos de Extensión</td>
<td>Ninguno</td>
</tr>
</tbody>
</table>
Diseño Interface Lógica

Diseño Interface Física
CU11 Mostrar Probabilidad del uso de numero de Palas-Cargador-Camión

<table>
<thead>
<tr>
<th>Caso de Uso</th>
<th>Mostrar Probabilidad del uso de numero de Palas-Cargador-Camión</th>
</tr>
</thead>
<tbody>
<tr>
<td>Id</td>
<td>CU11</td>
</tr>
<tr>
<td>Actores</td>
<td>Usuario</td>
</tr>
</tbody>
</table>
| Precondición | El usuario debe tener permiso sobre los datos de numero de Palas-Cargador-Camión
| | Debe estar generados los modelos de Data Mining |
| Flujo Básico | • El caso de uso comienza cuando el Usuario selecciona los datos entrada
| | • La tabla dinámica se actualiza mostrando Rendimiento, Utilización, Disponibilidad de las Cargas.
| | • El Usuario selecciona la dimensión del tiempo de la lista de dimensiones y medidas, haciendo doble clic o arrastrando a cualquiera de las aéreas permitidas para dimensiones de la tabla dinámica.
| | • La tabla dinámica se actualiza seleccionado la dimensión de tiempo.
| | • El Usuario utiliza las opciones presentadas por la tabla dinámica para construir el reporte de su preferencia en base a |
los datos de empleado mostrados.

<table>
<thead>
<tr>
<th>Pos condición</th>
<th>Ninguna</th>
</tr>
</thead>
<tbody>
<tr>
<td>Puntos de Extensión</td>
<td></td>
</tr>
</tbody>
</table>

- Si el usuario elige Rendimiento, Utilización, Disponibilidad de las Cargas por Equipo de Transporte se llamará al caso de uso "Mostrar Histórico de Rendimiento, Utilización, Disponibilidad por Equipo de Transporte".

- Si el usuario elige Rendimiento, Utilización, Disponibilidad de las Cargas por Equipo de Transporte se llamará al caso de uso "Mostrar Histórico de Rendimiento, Utilización, Disponibilidad por Equipo de Carguío".

Diagrama Lógico Interface

Diseño Lógico Interface
CU12 Programar Tarea carga Data Warehouse

<table>
<thead>
<tr>
<th>Caso de Uso</th>
<th>Programar Tarea carga Data Warehouse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Id</td>
<td>CU12</td>
</tr>
<tr>
<td>Actores</td>
<td>Business Intelligence</td>
</tr>
<tr>
<td>Precondición</td>
<td></td>
</tr>
</tbody>
</table>
| Flujo Básico | • Estudia el modelo de negocio y las necesidades.
 | • Genera Plan de carga |
| Pos condición | Ninguna |
| Puntos de Extensión | Ninguno |

CU13 Ejecutar Tarea Carga Datos

<table>
<thead>
<tr>
<th>Caso de Uso</th>
<th>Ejecutar Tarea carga Data Warehouse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Id</td>
<td>CU13</td>
</tr>
<tr>
<td>Actores</td>
<td>Administrador</td>
</tr>
<tr>
<td>Precondición</td>
<td>CU12</td>
</tr>
</tbody>
</table>
CU14 Crear Modelo Data Mining

- **Flujo Básico**
 - Genera los paquetes de SSIS
 - Carga en base datos el paquete y el JOB plan de Carga

- **Pos condición**
 Ninguna

- **Puntos de Extensión**
 Ninguno

Caso de Uso Crear Modelo Data Mining

<table>
<thead>
<tr>
<th>Id</th>
<th>CU14</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Actores</th>
<th>Business Inteligence</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Precondición</th>
<th>Se necesita autenticación para los datos, Incluir los Datos de entrada y predicción</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Flujo Básico</th>
<th>Se selecciona el modelo de Data Mining</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Se ingresa los datos de entrada y luego la consulta</td>
</tr>
<tr>
<td></td>
<td>La tabla se actualiza con los resultados</td>
</tr>
<tr>
<td></td>
<td>El sistema despliega el reporte determinado.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pos condición</th>
<th>Ninguna</th>
</tr>
</thead>
</table>
CU15 Autentificar Solicitante

<table>
<thead>
<tr>
<th>Caso de Uso</th>
<th>Autenticar solicitante</th>
</tr>
</thead>
<tbody>
<tr>
<td>Id</td>
<td>CU015</td>
</tr>
<tr>
<td>Actores</td>
<td>Usuario</td>
</tr>
<tr>
<td>Precondición</td>
<td></td>
</tr>
<tr>
<td>Flujo Básico</td>
<td>El caso de uso comienza cuando el usuario se conecta al Data Warehouse a través de una hoja de Excel o un determinado reporte ya construido en una hoja Excel.</td>
</tr>
<tr>
<td></td>
<td>El sistema despliega la pantalla de autenticación.</td>
</tr>
<tr>
<td></td>
<td>El empleado introduce el usuario y contraseña correspondiente.</td>
</tr>
<tr>
<td></td>
<td>El sistema valida el usuario y contraseña y crea una nueva sesión guardando el usuario y contraseña.</td>
</tr>
<tr>
<td></td>
<td>El sistema despliega el reporte determinado.</td>
</tr>
<tr>
<td>Pos condición</td>
<td>Ninguna</td>
</tr>
<tr>
<td>Puntos de Extensión</td>
<td>Ninguno</td>
</tr>
</tbody>
</table>
7.5 Análisis de la arquitectura

“El propósito del análisis e la arquitectura es esbozar el Modelo del Análisis y la arquitectura mediante la identificación de paquetes del análisis y clases del análisis”. [10]

Identificación de los paquetes de análisis a partir de los casos de uso

“Los paquetes se utilizan para organizar los elementos de modelado en partes mayores que se pueden manipular como un grupo. También se pueden emplear los paquetes para representar diferentes vistas de la arquitectura el sistema”. [10]

7.5.1 Paquete carga de datos

De los casos de uso de CU12 Programar Tarea carga Data Warehouse y CU13 Ejecutar Tarea carga Data Warehouse, se obtiene el paquete "Cargar Datos"

![Diagrama de paquete de carga de datos]

7.5.2 Paquete de Seguridad

Del Caso de Uso de CU15 Autentificación del Solicitante, se obtiene el Paquete de Seguridad
7.5.3 Paquete Descargas

Sub Paquete Movimiento de Materiales

Los caso de Uso CU01 Mostrar Histórico de Movimiento de Materiales, CU02 Mostrar Histórico de Movimiento de Materiales por Equipo de Carguío, CU03 Mostrar Histórico de Movimiento de Materiales por Equipo de Transporte dan Origen al Sub Paquete “Movimiento de Materiales"
Sub Paquete Leyes de Materiales

Los Caso de Uso CU04 Mostrar Histórico de Leyes de Materiales, CU05 Mostrar Histórico de Leyes de Materiales por Tipo de Material, CU06 Mostrar Histórico de Leyes de Materiales por Destino, CU07 Mostrar Histórico de Leyes de Materiales por Origen dan origen al sub Paquete “Leyes de Materiales”.
7.5.4 Paquete Cargas

Sub Paquete Horas, Detenciones, Mantención y Reserva

Los Caso de Uso CU16 Mostrar Histórico de Horas, Detenciones, Mantención y Reserva dan origen al Sub Paquete “Horas, Detenciones, Mantención y Reserva”
Sub paquete de Rendimiento, Utilización, Disponibilidad

Los Caso de Uso CU08 Mostrar Histórico de Rendimiento, Utilización, Disponibilidad, CU09 Mostrar Histórico de Rendimiento, Utilización, Disponibilidad por Equipo de Transporte, CU10 Mostrar Histórico de Rendimiento, Utilización, Disponibilidad por Equipo de Carguío dan origen a Sub paquete de “Rendimiento, Utilización, Disponibilidad”

7.5.5 Paquete Data Mining

Los Caso de Uso CU11 Mostrar Probabilidad del uso de número de Palas-Cargador-Camión, CU14 Crear Modelo Data Mining dan Origen a el Paquete “Data Mining”
7.6 Modelo de Análisis

El Modelo de Análisis es una jerarquía de paquetes de análisis que organiza y divide el sistema en partes más manejables. Como se puede ver en la figura siguiente se crearon 4 paquetes de análisis donde el paquete “Carga de Datos” se encarga de las funciones del proceso ETL, el paquete “Seguridad” se encarga de las validaciones de acceso al Data Warehouse y los demás paquetes y sub-paquetes representan cada uno un tema de análisis.
7.7 Definición Fuentes de Datos

Las fuentes de datos son el origen de alimentación del Data Warehouse, está conformada mayoritariamente por registros los sistemas operacionales que posea la operación y estos pueden ser archivos planos, bases de datos, textos, planillas, etc.

7.7.1 Nivel Conceptual

Se necesita saber cuáles son las fuente de datos disponible para utilizar en el data Warehouse, Para eso se va utilizar el Diagrama Conceptual de la Fuente de Datos, que en realidad es un Diagrama de Clases que representa las clases persistentes de los sistemas operacionales de donde se obtienen los datos.

En el siguiente figura se muestra el diagrama conceptual de la fuente de datos para el Data Warehouse, esta fuente está constituida por las base de datos de la operación dentro de la mina, en la cual están contenidos los procesos de Carga y descarga. En el diagrama se muestran las clases y atributos que intervienen en el carga del Data Warehouse.

7.7.2 Nivel Lógico

La definición de las fuentes en el nivel lógico se realiza mapeando las fuentes desde el nivel conceptual. El nivel lógico está basado en las bases de datos relacionales, Utilizando UML para modelar

A continuación se muestra como está constituido las base datos que alimentara el Data Warehouse.
Descripción de las Clases de la Fuente

<table>
<thead>
<tr>
<th>Código</th>
<th>Nombre</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCS001</td>
<td>WS_PV_CAR</td>
<td>Clase que almacena información de los datos del proceso de Carga en la operación en la mina</td>
</tr>
<tr>
<td>SCS002</td>
<td>WS_PV_DES</td>
<td>Clase que almacena información de los datos del proceso de Descarga en la operación en la mina</td>
</tr>
<tr>
<td>SCS003</td>
<td>WS_PV_GRA</td>
<td>Clase que almacena información de los datos del proceso de Muestra de las Leyes en la operación en la mina</td>
</tr>
<tr>
<td>SCS004</td>
<td>WS_PV_EQU</td>
<td>Almacena la información de los datos de los equipos.</td>
</tr>
<tr>
<td>SCS005</td>
<td>WS_PV_OPE</td>
<td>Almacena la información de los datos de los Operarios.</td>
</tr>
<tr>
<td>SCS006</td>
<td>WS_PV_TUR</td>
<td>Almacena la información de los datos de los Turnos.</td>
</tr>
<tr>
<td>SCS007</td>
<td>WS_PV_MAT</td>
<td>Almacena la información de los datos de los Materiales.</td>
</tr>
</tbody>
</table>

7.7.3 Nivel Físico

Se define la configuración física de las fuentes de datos que alimentan el Data Warehouse. Esto es Importante saber ya así sabremos el tipo de conexión a utilizar para la extracción de los datos.
8 Diseño

En el siguiente capítulo se realiza el diseño conceptual del Data Mart y etapa de integración con la fuente de los datos. Estos diseño conceptual se utiliza modelo multidimensional, en el diseño conceptual de integración se utiliza el papeo de datos.

En este capítulo se realiza el diseño conceptual del Data Mart y la etapa de integración con las fuentes de datos. En el diseño conceptual del Data Mart se utiliza el modelo multidimensional en el diseño conceptual de Integración se utilizan los mapeos de datos.

8.1 Diseño conceptual del data mart

El modelo conceptual es la base del Data Warehouse (Data Mart), base de datos multidimensionales y aplicaciones OLAP. El modelo multidimensional estructura la información a través de hechos y dimensiones. Hechos contienen las medidas relevantes del proceso de negocio y la dimensión posee el contexto de análisis del hecho.

En la fase de análisis se empaquetaron los casos de uso de acuerdo a los temas del negocio que se analizan con el Data Mart, además de otros aspectos como la gestión de ingreso, data mining y la carga de datos.

Definición del modelo (nivel 1)

El modelado multidimensional comienza con un nivel alto de abstracción y luego se con niveles con mayor detalle, Primer nivel se define los esquemas que se identifican en el Data Mart. Cada paquete representa un esquema tales como
“Descarga” y “Carga” y la dependencia que entre ellos significan el compartir dimensiones.

Definición del esquema Descargas (nivel 2)
Definición de hechos y dimensiones Descargas (nivel 3)

Dimensión Turno

Dimensión Destino
Dimensión Origen

```
<table>
<thead>
<tr>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Origen</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>DescripciónOrigen</td>
</tr>
<tr>
<td>DA &lt;&lt;DescriptorAttribute&gt;&gt; fase</td>
</tr>
<tr>
<td>DA &lt;&lt;DescriptorAttribute&gt;&gt; fasebanco</td>
</tr>
<tr>
<td>DA &lt;&lt;DescriptorAttribute&gt;&gt; grupo</td>
</tr>
<tr>
<td>D &lt;&lt;Descriptor&gt;&gt; blast</td>
</tr>
</tbody>
</table>
```

Dimensión Material

```
<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>DescripciónMaterial</td>
</tr>
<tr>
<td>DA &lt;&lt;DescriptorAttribute&gt;&gt; grupo</td>
</tr>
<tr>
<td>D &lt;&lt;Descriptor&gt;&gt; load</td>
</tr>
</tbody>
</table>
```
Dimensión equipos

\[\text{Descripción Equipos} \]

- \(DA << \text{Descriptor Attribute} >> \) Eqmtarea
- \(DA << \text{Descriptor Attribute} >> \) Eqmttype
- \(D << \text{Descriptor} >> \) Eqmtid

Dimensión Operador

\[\text{Descripción Operador} \]

- \(DA << \text{Descriptor Attribute} >> \) name
- \(D << \text{Descriptor} >> \) Opertid
Dimensión Tiempo

[Diagrama con nodos y连线表示时间维度的层级关系，包括年、半年、学期、学年、月、周、日等。]
Hechos Descargas
Tabla de Hecho Cargas
8.2 Diagrama Conceptual del Data Warehouse (Data Mart)

Como se menciona anteriormente, con la constitución de los modelos multidimensionales en sus niveles de detalle se obtiene el Diagrama Conceptual del Data Warehouse (Data Mart).

Las clases que se muestran a continuación son las dimensiones, representadas por el color naranja claro y los hechos son los de color azul.

Diagrama Conceptual para Descargas

![Diagrama Conceptual para Descargas]
Diagrama Conceptual para Cargas

8.3 Diseño conceptual de la integración (Mapeo de Datos)

Se plantea la identificación de los datos desde su fuente y como estos serán traspasado hacia el sistema Data Warehouse. Sirviendo como base para la construcción del Proceso ETL en el nivel lógico.

Nivel Base de Datos (nivel 0)

Mapeo de datos a nivel conceptual, desde las clases de las fuentes de datos hasta el Data Warehouse (Data Mart)
Nivel de los Flujos de datos (nivel 1)

Este es un nivel con mayor detalle donde están encapsulados en paquetes las dimensiones y hechos.

Mapeo Esquema de Carga y Descarga

En esta sección se definen los mapeos de las dimensiones y hechos que afectan a los modelos en estrella de las Cargas y Descargas a nivel 2 (nivel de tablas) y nivel 3 (nivel de atributos).
Mapeo Dimensión Operador

WS PV OPE
- operid : String
- name : String

WS PV CAR
- oper : String
- eoper : String

WS PV DES
- oper : String
- eoper : String

<<Mapping>>
Paso 1 (selección, transformación y carga de datos)

Dim Operadores (from Logical View)
- operid : Integer
- name : String

Mapeo Dimensión Equipos

WS PV CAR
(from Scalar Types)
- truck : String
- excav : String

WS PV DES
(from Scalar Types)
- truck : String
- excav : String

WS PV EQU
- eqmtarea : String
- eqmtd : String
- eqmtype : String

<<Mapping>>
Paso 1 (selección, transformación y carga de datos)

Dim Equipos
- eqmtarea : String
- eqmtd : String
- eqmtype : String

Mapeo Dimensión Materiales

WS PV DES
(from Scalar Types)
- load : Integer

WS PV MAT
- load : Integer
- group : String

<<Mapping>>
Paso 1 (selección, transformación y carga de datos)

Dim Materiales
- group : String
- load : Integer
Mapeo Hechos Descargas

WS PV DES
(From Scalar Types)
- loc : String
- blast : String
- dumptons : Integer
- excav : String
- truck : String
- loader : String
- power : String
- idload : Integer
- shiftindex : Integer

WS PV GRA
- acf : Integer
- alt : Integer
- cal : Integer
- coil : Integer
- cco3 : Integer
- cus : Integer
- cut : Integer
- shiftindex : Integer
- loc : Integer

WS PV TUR
- crewmain : Integer
- crewplant : Integer
- datename : String
- shift : Integer
- shiftindex : Integer

Fact Dumps
- Chancado Total : Integer
- Ley Act : Integer
- Ley Alt : Integer
- Ley Cal : Integer
- Ley CL : Integer
- Ley CO3 : Integer
- Ley Cus : Integer
- Ley Cut : Integer
- shiftdate : Integer
- Ley Den : Integer
- Ley Lit : Integer
- Ley Min : Integer
- Mina a Botadero : Integer
- Mina a Stock Sulfuros : Integer
- Mina a Chancado : Integer
- Mina a Pila ROM : Integer
- Mina a Stock Oxidos : Integer
- Mina a stocks oxidos A : Integer
- Mina a stocks oxidos B : Integer
- Mina a stocks sulfuros A : Integer
- Mina a stocks sulfuros B : Integer
- Remanejo especial : Integer
- Remanejo normal : Integer
- Remanejo Rom : Integer
- ROM extraído : Integer
- ROM movido : Integer
- Stock a Chancado : Integer
- Total Extruido Mina : Integer
- Total Movido Dentro de la Mina : Integer
- Total Movido Mina : Integer
- Dumptons : Integer
- Numero Camiones : Integer
- Numero Carretillas : Integer
- Numero de Pales : Integer
- ubicacion : String
- blast : Single
- excav : String
- truck : Single
- loader : String
- power : String
- idload : Integer
- shiftindex : Integer
Mapeo Hechos Cargas
9 Implementación

Esta sección explica cómo fue realizada la implementación del proyecto como un Data Warehouse Virtual (Data Mart)

9.1 Proceso ETL

Este proceso ETL fue realizado a través del software provisto por Microsoft Sql Server 2008 R2 a través de sus herramientas de BI, Integration Service.

En este proceso se generan paquetes para cada proceso y estos son almacenados en el Servidor de Base de Datos

En el cual se construyen los modelos planteados en los capítulos anteriores.

A continuación se muestran los modelos implementados.

Dimensión Tiempo

<table>
<thead>
<tr>
<th>Flujo de Control</th>
<th>Flujo Datos</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Dimensión Turno

<table>
<thead>
<tr>
<th>Flujo de Control</th>
<th>Flujo Datos</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dimensión Turno

<table>
<thead>
<tr>
<th>Flujo de Control</th>
<th>Flujo Datos</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Dimensión Material

<table>
<thead>
<tr>
<th>Flujo de Control</th>
<th>Flujo Datos</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Data Flow Task</td>
<td>Data Conversion</td>
</tr>
<tr>
<td>Dim Material DW</td>
<td></td>
</tr>
</tbody>
</table>

Dimensión Equipos

<table>
<thead>
<tr>
<th>Flujo de Control</th>
<th>Flujo Datos</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Data Flow Task</td>
<td>Data Conversion</td>
</tr>
<tr>
<td>Derived Column</td>
<td>OLE DB Destination</td>
</tr>
</tbody>
</table>
Dimensión Origen

<table>
<thead>
<tr>
<th>Flujo de Control</th>
<th>Flujo Datos</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRUNCATE TABLE dim_ub...</td>
<td>OLE DB Source</td>
</tr>
<tr>
<td>Data Flow Task</td>
<td>Derived Column 1</td>
</tr>
<tr>
<td></td>
<td>Aggregate 1</td>
</tr>
<tr>
<td></td>
<td>Sort</td>
</tr>
<tr>
<td></td>
<td>Data Conversion</td>
</tr>
<tr>
<td></td>
<td>Aggregate</td>
</tr>
<tr>
<td></td>
<td>Sort 2</td>
</tr>
<tr>
<td></td>
<td>Derived Column</td>
</tr>
<tr>
<td></td>
<td>OLE DB Destination</td>
</tr>
</tbody>
</table>

Dimensión Destino

<table>
<thead>
<tr>
<th>Flujo de Control</th>
<th>Flujo Datos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tarea Ejecutar SQL</td>
<td>OLE DB Source</td>
</tr>
<tr>
<td>Data Flow Task</td>
<td>Aggregate</td>
</tr>
<tr>
<td></td>
<td>Sort</td>
</tr>
<tr>
<td></td>
<td>Derived Column</td>
</tr>
<tr>
<td></td>
<td>Data Conversion</td>
</tr>
<tr>
<td></td>
<td>OLE DB Destination</td>
</tr>
</tbody>
</table>
9.2 Implementación de los Cubos

A través de la herramienta Analisis Service, se implementa los cubos. Desde la cual se pueden acceder al Data Warehouse implementado a través del proceso ETL.

Selección Data Source

9.2.1 Creación Dimensiones

Dimensión Destino

<table>
<thead>
<tr>
<th>Attributes</th>
<th>Hierarchies</th>
<th>Data Source View</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dim_Destino</td>
<td>To create a new hierarchy, drag an attribute here.</td>
<td>dim_destino</td>
</tr>
</tbody>
</table>

| ubicacion |
| grupo1 |
| grupo2 |
| grupo3 |

Dimensión Equipos
<table>
<thead>
<tr>
<th>Dimensión Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attributes</td>
</tr>
<tr>
<td>Dim Equipments</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dimensión Operadores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attributes</td>
</tr>
<tr>
<td>Dim Operators</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dimensión Origen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attributes</td>
</tr>
<tr>
<td>Dim Origen</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Dimensión Tiempo

<table>
<thead>
<tr>
<th>Attributes</th>
<th>Hierarchies</th>
<th>Data Source View</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dim Time</td>
<td>Año - Semestre - Trimestre - Mes - Fecha</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day Of Half Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day Of Month</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day Of Quarter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day Of Trimester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day Of Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fiscal Day</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fiscal Day Of Half Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fiscal Day Of Month</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fiscal Day Of Quarter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fiscal Day Of Trimester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fiscal Day Of Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fiscal Half Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fiscal Half Year Of Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fiscal March</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fiscal March Of Half Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fiscal March Of Month</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fiscal March Of Quarter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fiscal March Of Trimester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fiscal March Of Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fiscal Quarter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fiscal Quarter Of Half Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fiscal Quarter Of Month</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fiscal Quarter Of Quarter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fiscal Quarter Of Trimester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fiscal Quarter Of Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fiscal Trimester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fiscal Trimester Of Half Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fiscal Trimester Of Month</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fiscal Trimester Of Quarter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fiscal Trimester Of Trimester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fiscal Trimester Of Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fiscal Week</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fiscal Week Of Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fiscal Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Half Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Half Year Of Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Month</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Month Of Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Month Of Half Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Month Of Quarter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Month Of Trimester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Month Of Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quarter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quarter Of Half Year</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dimensión Turno

<table>
<thead>
<tr>
<th>Attributes</th>
<th>Hierarchies</th>
<th>Data Source View</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dim Shifts</td>
<td>Año Fiscal - Semestre Fiscal - Trimestre Fiscal - Mes Fiscal - Dia Fiscal</td>
<td></td>
</tr>
<tr>
<td>Crewmine#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crewplant#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Datename</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shift#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shiftindex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>To create a new hierarchy, drag an attribute here.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

116
9.2.2 Creación Cubos MOLAP

Cubo Cargas

Cubo Descarga
9.3 Acceso al cubo y operaciones básicas

9.3.1 Acceso al cubo

La única forma que puede acceder el usuario al cubo es mediante la aplicación Microsoft Excel, el administrador de los datos accede a la configuración del cubo mediante Microsoft Analys Services, el cual posee la opción de exploración para cubos multidimensionales, quien este proyecto se desarrollaron dos lo cual está enfocado en cargas y descargas.

El acceso a continuación es mediante Microsoft Excel 2010, en la figura adjunta a continuación.

Figura acceso cubo.
Figura conexión servidor

Figura selección cubo
Asistente para la conexión de datos

Guardar archivo de conexión de datos y finalizar

Escriba un nombre y una descripción para el nuevo archivo de conexión de datos y presione Finalizar para guardar.

Nombre de archivo:
localhost DW Cubo Cargas.ocd

Guardar contraseña en archivo

Descripción:
(Para ayudar a otros a entender lo que indica su conexión de datos)

Nombre descriptivo:
localhost DW Cubo Cargas

Palabras clave de búsqueda:

Intentar utilizar siempre este archivo para actualizar los datos

Servicios de Excel: Configuración de autenticación...

Cancelar < Atrás Siguiente > Finalizar

Figura archivo de conexión a cubo

Figura cubo desplegado como tabla dinámica
Al ingreso del cubo se posee una lista vacía desde sus datos, hasta cuando alguno de sus dimensiones son seleccionadas. Necesita que se ingresaba una de medida para poder entregar algún valor.

Desde el acceso de estos cubos se pueden confeccionar reportes a medida ya que esto posibilita que estos cubos se puedan recargar a través del tiempo, y también permite generar nuevas tablas para nuevos tipos de análisis, también nos da la posibilidad de generar gráficos dinámicos con los mismos datos extraídos desde los cubos.
La línea de tiempo que está representada a través de la dimensión de tiempo posee todos los tipos de herencia, que son debidos a través de los requerimientos la cual representa la mayoría de los reportes.

9.3.2 Operaciones de consulta

La obra se más comunes de consulta son el agregar o desagregar nuevas dimensiones que están disponibles, como también poder agregar filtros a los datos, agrega totales o sus totales, agrupación y de agrupación de información, y todas las características disponibles que entrega las tablas dinámicas de acuerdo a la integración de Microsoft SQL server 2008 R2, para inteligencia de negocios.

Selección de dimensiones

La selección de la dimensión sea realizada haciendo clic sobre el cuadro box en la barra derecha de selección de tablas dinámicas, o también pueden ser arrastradas hacia las etiquetas de columna o etiqueta de fila para hacer análisis dimensional es los cuales se puedan cruzar unos con otros, también existe la posibilidad de hacer subdivisiones de dimensiones para poseer más detalles. La dimensión de tiempo posee las herencias, las cuales al ser seleccionada está ya poseen sub categorías.
Selección de medidas

Para seleccionar las medidas estas están contenidas en la barra mostrando como inicial el símbolo de una serie numérica, también ésta puede ser arrastrada hacia el cuadro de valores, la formal agrupación de las medidas ya están definidas mediante la construcción del cubo. Es posible agregar cualquier medida que estimemos conveniente, como cualquier medida que deseamos de seleccionar.

De desagregación de información y filtros

Existe un nivel de detalle de la información con la acción de desagregación el cual está representada a través de un símbolo más (+). También existe la opción de hacer doble clic sobre el valor del cual entrega del último nivel de la jerarquía de desagregación donde llega al nivel máximo de granularidad.

Figura desagregación de fechas.
Figura Drill Through

Filtrado

Los filtros pueden utilizados sobre las medidas y las dimensiones, éstos pueden ser seleccionado sobre información visible y no visible, en la cual hay que tener mucha precaución y tomar en cuenta a la hora de obtener resultados.
10 Conclusión

Con el trabajo desarrollado y expuesto anteriormente, se ha logrado cumplir con los objetivos esperados, generando una solución a la problemática existente, permitiendo a los usuarios obtener información desde el punto de vista del negocio y haciéndola más accesible esta. Generando una fuente de datos para análisis, lo cual permite apoyo para la toma de decisión.

La empresa ve con mucho entusiasmo la propuesta desarrollada, ya que sobrepasa los objetivos esperados, siendo el puntapié para el desarrollo de un gran Data Warehouse.

En el plano profesional, el enfrentar este proyecto, logré afrontar este proyecto gracias a los conocimientos adquiridos durante el transcurso de la carrera de Ingeniería Civil en Informática, me permitió lograr desarrollarme con un Ingeniero con la capacidades de superar diversas situaciones y lograr resolver las problemáticas.

Este fue un largo camino en donde experimente situaciones del mundo laboral en donde hay que realizar diversas reuniones, presentaciones, acuerdos y lograr poder entender el negocio de la minería, en el cual hay que entregar un valor agregado a los productos entregados, trabajar bajo presión y tener la altura de mira para tomar decisiones.

12 Bibliografía

125
<table>
<thead>
<tr>
<th>Medida Calculada Descarga</th>
<th>Numero de palas</th>
<th>Numero de palas involucrada</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Numero de camiones</td>
<td>Numero de camiones involucrados</td>
</tr>
<tr>
<td></td>
<td>Numero de cargadores</td>
<td>Numero de cargadores involucrados</td>
</tr>
<tr>
<td></td>
<td>Ley Cut</td>
<td>Porcentaje de cobre total en material</td>
</tr>
<tr>
<td></td>
<td>Ley Cus</td>
<td>Porcentaje de cobre soluble en material</td>
</tr>
<tr>
<td></td>
<td>Ley Co3</td>
<td>Porcentaje de carbonato en material</td>
</tr>
<tr>
<td></td>
<td>Ley Cl</td>
<td>Porcentaje de cloro en el material</td>
</tr>
<tr>
<td></td>
<td>Ley Den</td>
<td>Dencidad del material</td>
</tr>
<tr>
<td></td>
<td>Ley Min</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ley Lit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ley Alt</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ley Acf</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ley Cal</td>
<td>Porcentaje de calico en el material</td>
</tr>
<tr>
<td></td>
<td>Mina a Botadero</td>
<td>Toneladas descargadas desde mina a botadero</td>
</tr>
<tr>
<td></td>
<td>Mina a Pila Rom</td>
<td>Toneladas descargadas desde mina a la pila del rom</td>
</tr>
<tr>
<td></td>
<td>Total Movido Dentro de la Mina</td>
<td>Toneladas movidas dentro de la mina</td>
</tr>
<tr>
<td></td>
<td>Total Extraido Mina</td>
<td>Toneladas extraídas de la mina</td>
</tr>
<tr>
<td></td>
<td>Total Movido Mina</td>
<td>Toneladas Movido de mina</td>
</tr>
<tr>
<td></td>
<td>Mina a stocks Sulfuro A</td>
<td>Toneladas movidas de Mina a stocks Sulfuro A</td>
</tr>
<tr>
<td></td>
<td>Mina a stocks Sulfuro B</td>
<td>Toneladas movidas Mina a stocks Sulfuro B</td>
</tr>
<tr>
<td></td>
<td>Mina a stocks Oxido A</td>
<td>Toneladas movidas Mina a stocks Oxido A</td>
</tr>
<tr>
<td></td>
<td>Mina a stocks Oxido B</td>
<td>Toneladas movidas Mina a stocks Oxido B</td>
</tr>
<tr>
<td></td>
<td>Mina a stocks Sulfuro</td>
<td>Toneladas movidas Mina a stocks Sulfuro</td>
</tr>
<tr>
<td></td>
<td>Mina a stocks Oxido</td>
<td>Toneladas movidas Mina a stocks Oxido</td>
</tr>
<tr>
<td></td>
<td>Mina a Chancado</td>
<td>Toneladas movidas Mina a Chancado</td>
</tr>
<tr>
<td></td>
<td>Stock a Chancado</td>
<td>Toneladas movidas Stock a Chancado</td>
</tr>
<tr>
<td></td>
<td>Chancado total</td>
<td>Toneladas movidas Chancado total</td>
</tr>
<tr>
<td></td>
<td>ROM extraido</td>
<td>Toneladas de Rom extraídas</td>
</tr>
<tr>
<td>Medida Descarga</td>
<td>Toneladas de Remanejo Especial</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>--------------------------------</td>
<td></td>
</tr>
<tr>
<td>Medida Carga Calculada</td>
<td>Toneladas por horas</td>
<td></td>
</tr>
<tr>
<td>Medida Carga</td>
<td>Toneladas Cargadas</td>
<td></td>
</tr>
<tr>
<td>Carga Calculada</td>
<td>Toneladas cargadas</td>
<td></td>
</tr>
<tr>
<td>Carga Calculada</td>
<td>Consumo de neumaticos cargado</td>
<td></td>
</tr>
<tr>
<td>Carga Calculada</td>
<td>Consumo de neumaticos promedio</td>
<td></td>
</tr>
<tr>
<td>Carga Calculada</td>
<td>Consumo de neumaticos vacio</td>
<td></td>
</tr>
<tr>
<td>Carga Calculada</td>
<td>Rendimiento toneladas horas</td>
<td></td>
</tr>
<tr>
<td>Carga Calculada</td>
<td>Porcentaje Utilizacion</td>
<td></td>
</tr>
<tr>
<td>Carga Calculada</td>
<td>Porcentaje disponibilidad</td>
<td></td>
</tr>
<tr>
<td>Carga Calculada</td>
<td>Toneladas cargadas</td>
<td></td>
</tr>
<tr>
<td>Carga Calculada</td>
<td>Tiempo ciclo en horas</td>
<td></td>
</tr>
<tr>
<td>Carga Calculada</td>
<td>Tiempo variable en horas</td>
<td></td>
</tr>
<tr>
<td>Carga Calculada</td>
<td>Tiempo fijo en horas</td>
<td></td>
</tr>
<tr>
<td>Carga Calculada</td>
<td>Tiempo Promedio Horas Disponibles</td>
<td></td>
</tr>
<tr>
<td>Carga Calculada</td>
<td>Tiempo Promedio Hora Operativo</td>
<td></td>
</tr>
<tr>
<td>Carga Calculada</td>
<td>Tiempo Promedio Reservas</td>
<td></td>
</tr>
<tr>
<td>Carga Calculada</td>
<td>Tiempo Promedio Demora Programada</td>
<td></td>
</tr>
<tr>
<td>Carga Calculada</td>
<td>Tiempo Promedio Demora no Programada</td>
<td></td>
</tr>
<tr>
<td>Carga Calculada</td>
<td>Tiempo Promedio Mantencion Programada</td>
<td></td>
</tr>
<tr>
<td>Carga Calculada</td>
<td>Tiempo Promedio Mantencion no Programada</td>
<td></td>
</tr>
<tr>
<td>Carga Calculada</td>
<td>Numero de camiones utilizados</td>
<td></td>
</tr>
<tr>
<td>Carga Calculada</td>
<td>Numero de cargadores utilizados</td>
<td></td>
</tr>
<tr>
<td>Carga Calculada</td>
<td>Numero palas utilizados</td>
<td></td>
</tr>
<tr>
<td>Carga Calculada</td>
<td>Toneladas de material por horas promedio</td>
<td></td>
</tr>
</tbody>
</table>

| Medida Carga | Toneladas cargadas |
| Medida Carga | Contador numero de cargas |
Anexo B - Medidas Calculadas

Descargas

CREATE MEMBER CURRENTCUBE.[Measures].[Mina a Botadero]
 AS ((([Dim Origen].[Grupo].&[F],[Dim
 Destino].[Grupo3].&[BOT]),[Measures].[Dumptons]),
 VISIBLE = 1;
CREATE MEMBER CURRENTCUBE.[Measures].[Mina a Pila ROM]
 AS ((([Dim Origen].[Grupo].&[F],[Dim
 Destino].[Grupo3].&[ROM]),[Measures].[Dumptons]),
 FORMAT_STRING = "Standard",
 VISIBLE = 1;
CREATE MEMBER CURRENTCUBE.[Measures].[Total Movido Dentro de la
 Mina]
 AS ((([Dim Origen].[Grupo].&[F],[Dim
 Destino].[Grupo3].&[BOT1700M]),[Measures].[Dumptons]),
 VISIBLE = 1;
CREATE MEMBER CURRENTCUBE.[Measures].[Total Extraido Mina]
 AS ((([Dim Origen].[Grupo].&[F],[Dim
 Destino].[Grupo3].&[All]),[Measures].[Dumptons]) - ((([Dim
 Origen].[Grupo].&[F],[Dim
 Destino].[Grupo3].&[BOT1700M]),[Measures].[Dumptons]),
 VISIBLE = 1;
CREATE MEMBER CURRENTCUBE.[Measures].[Total Movido Mina]
 AS ((([Dim Origen].[Grupo].&[F],[Dim
 Destino].[Grupo1].&[All]),[Measures].[Dumptons]),
 VISIBLE = 1;
CREATE MEMBER CURRENTCUBE.[Measures].[Mina a stocks sulfuro A]
 AS ((([Dim Origen].[Grupo].&[F],[Dim
 Destino].[Grupo2].&[SSUA]),[Measures].[Dumptons]),
 VISIBLE = 1;
CREATE MEMBER CURRENTCUBE.[Measures].[Mina a stocks sulfuros B]
 AS ((([Dim Origen].[Grupo].&[F],[Dim
 Destino].[Grupo2].&[SSUB]),[Measures].[Dumptons]),
 VISIBLE = 1;
CREATE MEMBER CURRENTCUBE.[Measures].[Mina a stocks oxidos A]
 AS ((([Dim Origen].[Grupo].&[F],[Dim
 Destino].[Grupo2].&[SOXA]),[Measures].[Dumptons]),
 VISIBLE = 1;
CREATE MEMBER CURRENTCUBE.[Measures].[Mina a stocks oxidos B]
 AS ((([Dim Origen].[Grupo].&[F],[Dim
 Destino].[Grupo2].&[SOXB]),[Measures].[Dumptons]),
 VISIBLE = 1;
CREATE MEMBER CURRENTCUBE.[Measures].[Mina a Stock Sulfuros]
 AS ((([Dim Origen].[Grupo].&[F],[Dim
 Destino].[Grupo3].&[SSU]),[Measures].[Dumptons]),
 VISIBLE = 1;
CREATE MEMBER CURRENTCUBE.[Measures].[Mina a Stock Oxidos]
 AS ((([Dim Origen].[Grupo].&[F],[Dim
 Destino].[Grupo3].&[SOX]),[Measures].[Dumptons]),
 VISIBLE = 1;
CREATE MEMBER CURRENTCUBE.[Measures].[Mina a Chancado]
 AS ((([Dim Origen].[Grupo].&[F],[Dim
 Destino].[Grupo2].&[CH01]),[Measures].[Dumptons]),
 VISIBLE = 1;

128
CREATE MEMBER CURRENTCUBE.[Measures].[Stock a Chancado]
AS (([Dim Origen].[Grupo].&[S],[Dim Destino].[Grupo2].&[CH01]), [Measures].[Dumptons]),
VISIBLE = 1;
CREATE MEMBER CURRENTCUBE.[Measures].[Chancado Total]
AS (([Dim Origen].[Grupo].&[F],[Dim Destino].[Grupo2].&[CH01]), [Measures].[Dumptons]) + (([Dim Origen].[Grupo].&[S],[Dim Destino].[Grupo2].&[CH01]), [Measures].[Dumptons]),
VISIBLE = 1;
CREATE MEMBER CURRENTCUBE.[Measures].[ROM extraído]
AS (([Dim Origen].[Grupo].&[F],[Dim Destino].[Grupo2].&[ROM]), [Measures].[Dumptons]),
VISIBLE = 1;
CREATE MEMBER CURRENTCUBE.[Measures].[Remanejo especial]
AS (([Dim Origen].[Grupo].&[S],[Dim Destino].[Grupo1].&[S]), [Measures].[Dumptons]),
VISIBLE = 1;
CREATE MEMBER CURRENTCUBE.[Measures].[Remanejo Rom]
AS (([Dim Origen].[Grupo].&[S],[Dim Destino].[Grupo3].&[ROM]), [Measures].[Dumptons]),
VISIBLE = 1;
CREATE MEMBER CURRENTCUBE.[Measures].[Remanejo normal]
AS (([Dim Origen].[Grupo].&[S],[Dim Destino].[Grupo2].&[CH01]), [Measures].[Dumptons]),
VISIBLE = 1;
CREATE MEMBER CURRENTCUBE.[Measures].[all origen hasta el Bot1700M]
AS (([Dim Origen].[Fase].[All],[Dim Destino].[Grupo2].&[BOT1700M]), [Measures].[Dumptons]),
VISIBLE = 1;
CREATE MEMBER CURRENTCUBE.[Measures].[rem Rom + rem Esp + Rem Nor + T origen al 1700M]
AS ([Measures].[Remanejo Rom]+[Measures].[Remanejo especial]+[Measures].[Remanejo normal]+[all origen hasta el Bot1700M]),
VISIBLE = 1;
CREATE MEMBER CURRENTCUBE.[Measures].[Movi - Extr]
AS [Measures].[Total Movido Mina]-[Measures].[Total Extraído Mina],
VISIBLE = 1;
CREATE MEMBER CURRENTCUBE.[Measures].[cut promedio]
AS [Measures].[Cut]/[Measures].[Fact Dumps Count],
VISIBLE = 1;
CREATE MEMBER CURRENTCUBE.[Measures].[Ley Cut]
AS sum([Measures].[Cut])/sum([Measures].[Dumptons]),
VISIBLE = 1;
CREATE MEMBER CURRENTCUBE.[Measures].[Ley Cus]
AS [Measures].[Cus]/[Measures].[Dumptons],
VISIBLE = 1;
CREATE MEMBER CURRENTCUBE.[Measures].[Ley CO3]
AS [Measures].[Co3]/[Measures].[Dumptons],
VISIBLE = 1;
CREATE MEMBER CURRENTCUBE.[Measures].[Ley Cl]
AS [Measures].[Cl]/[Measures].[Dumptons],
VISIBLE = 1;
CREATE MEMBER CURRENTCUBE.[Measures].[Ley Den]
AS [Measures].[Den]/[Measures].[Dumptons],
VISIBLE = 1;
CREATE MEMBER CURRENTCUBE.[Measures].[Ley Min]
AS [Measures].[Min]/[Measures].[Dumptons],
VISIBLE = 1;
CREATE MEMBER CURRENTCUBE.[Measures].[Ley Lit]
AS [Measures].[Lit]/[Measures].[Dumptons],
VISIBLE = 1;
CREATE MEMBER CURRENTCUBE.[Measures].[Ley Alt]
AS [Measures].[Alt]/[Measures].[Dumptons],
VISIBLE = 1;
CREATE MEMBER CURRENTCUBE.[Measures].[Ley Acf]
AS [Measures].[Acf]/[Measures].[Dumptons],
VISIBLE = 1;
CREATE MEMBER CURRENTCUBE.[Measures].[Ley Cal]
AS [Measures].[Cal]/[Measures].[Dumptons],
VISIBLE = 1;
CREATE MEMBER CURRENTCUBE.[Measures].[r a all]
AS (([Dim Origen].[Grupo].&[R],[Dim Destino].[Grupo2].[All]),[Measures].[Dumptons]),
VISIBLE = 1;
CREATE MEMBER CURRENTCUBE.[Measures].[Numero Camiones]
AS sum(([Truckid].[Eqmtid].[Eqmtid],
IIF([Measures].[Dumptons]>0,1,NULL)),
FORMAT_STRING = "Standard",
VISIBLE = 1, ASSOCIATED_MEASURE_GROUP = 'Fact Dumps';
CREATE MEMBER CURRENTCUBE.[Measures].[Numero Cargadores]
AS sum(([Truckid].[Eqmtid].[Eqmtid],[Truckid].[Eqmtarea].&[Cargador]),
IIF([Measures].[Dumptons]>0,1,NULL)),
FORMAT_STRING = "Standard",
VISIBLE = 1, ASSOCIATED_MEASURE_GROUP = 'Fact Dumps';
CREATE MEMBER CURRENTCUBE.[Measures].[Numero de Palas]
AS sum(([Truckid].[Eqmtid].[Eqmtid],[Truckid].[Eqmtarea].&[Pala]),
IIF([Measures].[Dumptons]>0,1,NULL)),
FORMAT_STRING = "Standard",
VISIBLE = 1, ASSOCIATED_MEASURE_GROUP = 'Fact Dumps';

Cargas

CREATE MEMBER CURRENTCUBE.[Measures].[QM Cargado Promedio]
AS [Measures].[QM Cargado]/[Measures].[QM Cargado Count],
FORMAT_STRING = "Standard",
VISIBLE = 1, ASSOCIATED_MEASURE_GROUP = 'Fact Loads';
CREATE MEMBER CURRENTCUBE.[Measures].[QM Promedio Promedio]
AS [Measures].[QM Promedio],
FORMAT_STRING = "Standard",
VISIBLE = 1, ASSOCIATED_MEASURE_GROUP = 'Fact Loads';
CREATE MEMBER CURRENTCUBE.[Measures].[QM Vacio Promedio]
AS [Measures].[QM Vacio]/[Measures].[Automaticos count],
FORMAT_STRING = "Standard",

130
CREATE MEMBER CURRENTCUBE.[Measures].[Rendimiento]
AS [Measures].[Loadtons]/([Measures].[Cat01]),
FORMAT_STRING = "Standard",
VISIBLE = 1 , ASSOCIATED_MEASURE_GROUP = 'Fact Loads';

CREATE MEMBER CURRENTCUBE.[Measures].[Utilizacion]
AS ([Measures].[Cat01]/[Measures].[Numero de Camiones]) -
([Measures].[Cat02]/[Measures].[Numero de Camiones]) -
([Measures].[Cat03]/[Measures].[Numero de Camiones]),
FORMAT_STRING = "Percent",
VISIBLE = 1 , ASSOCIATED_MEASURE_GROUP = 'Fact Loads';

CREATE MEMBER CURRENTCUBE.[Measures].[Disponibilidad]
AS ([Measures].[Cat00]/[Measures].[Numero de Camiones]-
([Measures].[Cat04]/[Measures].[Numero de Camiones]-
([Measures].[Cat05]/[Measures].[Numero de Camiones]))/([Measures].[Cat00]/[Measures].[Numero de Camiones]),
FORMAT_STRING = "Percent",
VISIBLE = 1 , ASSOCIATED_MEASURE_GROUP = 'Fact Loads';

CREATE MEMBER CURRENTCUBE.[Measures].[Promedio Horas Disponibles]
AS [Measures].[Cat01]/[Measures].[Numero de Camiones],
FORMAT_STRING = "Standard",
VISIBLE = 1 , ASSOCIATED_MEASURE_GROUP = 'Fact Loads';

CREATE MEMBER CURRENTCUBE.[Measures].[Promedio Hora Operativo]
AS [Measures].[Cat01]/[Measures].[Numero de Camiones],
FORMAT_STRING = "Standard",
VISIBLE = 1 , ASSOCIATED_MEASURE_GROUP = 'Fact Loads';

CREATE MEMBER CURRENTCUBE.[Measures].[Promedio Mantencon no Programada]
AS [Measures].[Cat06]/[Measures].[Numero de Camiones],
FORMAT_STRING = "Standard",
VISIBLE = 1 , ASSOCIATED_MEASURE_GROUP = 'Fact Loads';

CREATE MEMBER CURRENTCUBE.[Measures].[Promedio Reservas]
AS [Measures].[Cat06]/[Measures].[Numero de Camiones],
VISIBLE = 1 , ASSOCIATED_MEASURE_GROUP = 'Fact Loads';

CREATE MEMBER CURRENTCUBE.[Measures].[Promedio Demora Programada]
AS [Measures].[Cat02]/[Measures].[Numero de Camiones],
FORMAT_STRING = "Standard",
VISIBLE = 1 , ASSOCIATED_MEASURE_GROUP = 'Fact Loads';

CREATE MEMBER CURRENTCUBE.[Measures].[Promedio Demora no Programada]
AS [Measures].[Cat03]/[Measures].[Numero de Camiones],
FORMAT_STRING = "Standard",
VISIBLE = 1 , ASSOCIATED_MEASURE_GROUP = 'Fact Loads';

CREATE MEMBER CURRENTCUBE.[Measures].[Promedio Mantencon no Programada]
AS [Measures].[Cat05]/[Measures].[Numero de Camiones],
FORMAT_STRING = "Standard",
VISIBLE = 1 , ASSOCIATED_MEASURE_GROUP = 'Fact Loads';
CREATE MEMBER CURRENTCUBE.[Measures].[Promedio Mantencion Programada] AS [Measures].[Cat04]/[Measures].[Numero de Camiones],
FORMAT_STRING = "Standard",
VISIBLE = 1 , ASSOCIATED_MEASURE_GROUP = 'Fact Loads';
CREATE MEMBER CURRENTCUBE.[Measures].[Numero de Camiones] AS sum([Truck].[Eqmtid].[Eqmtid],
IIF([Measures].[Loadtons]>0,1,NULL)),
FORMAT_STRING = "Standard",
VISIBLE = 1 , ASSOCIATED_MEASURE_GROUP = 'Fact Loads';
CREATE MEMBER CURRENTCUBE.[Measures].[Numero de Cargadores] AS sum(([Excav].[Eqmtid].[Eqmtid],[Excav].[Eqmtarea].&[Cargador]),
IIF([Measures].[Loadtons]>0,1,NULL)),
FORMAT_STRING = "Standard",
VISIBLE = 1 , ASSOCIATED_MEASURE_GROUP = 'Fact Loads';
CREATE MEMBER CURRENTCUBE.[Measures].[Numero de Palas] AS sum(([Excav].[Eqmtid].[Eqmtid],[Excav].[Eqmtarea].&[Pala]),
IIF([Measures].[Loadtons]>0,1,NULL)),
FORMAT_STRING = "Standard",
VISIBLE = 1 , ASSOCIATED_MEASURE_GROUP = 'Fact Loads';
CREATE MEMBER CURRENTCUBE.[Measures].[Toneladas por Horas] AS [Measures].[Loadtons]/[Measures].[Promedio Hora Operativo],
FORMAT_STRING = "Standard",
VISIBLE = 1 , ASSOCIATED_MEASURE_GROUP = 'Fact Loads';