UNIVERSIDAD DEL BÍO-BÍO

FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERÍA CIVIL Y AMBIENTAL

Profesor Patrocinante: Álvaro Suazo Schwencke

GERMINACIÓN Y CRECIMIENTO DE DICHONDRA EN MEZCLAS DE SUELO Y BIOSÓLIDOS

Proyecto de título presentado en conformidad a los requisitos para optar al Título de Ingeniero Civil.

TOMÁS SEBASTIÁN ROCHA SAAVEDRA

CONCEPCIÓN, MARZO DE 2015

NOMENCLATURA

NCH : Norma Chilena Oficial.

PTAR : Planta de Tratamientos de Aguas Residuales.

DMCS : Densidad Máxima Compactada Seca.

UCSC : Sistema Unificado de Clasificación de Suelos.

AASHTO : American Association of State Highway and Transportation Officials.

ASTM : American Society for Testing Materials.

ÍNDICE GENERAL

1.	IN	ΓRO	DUCCIÓN	3
1	.1.	Just	ificación del tema	4
1	.2.	Obj	etivos	4
	1.2.	.1	Objetivo general.	4
	1.2.	.2	Objetivos específicos.	4
2.	ME	тоі	DOLOGÍA	5
2	2.1	Mat	teriales	5
	2.1.	.1	Caracterización del Suelo.	5
	2.1.	.2	Biosólidos.	5
	2.1.	.3	Especie seleccionada.	6
2	2.2	Inst	alación de lisímetros.	7
	2.2.	.1	Llenado y compactación de los lisímetros	7
	2.2.	.2	Porcentaje de biosólidos.	7
	2.2.	.3	Sembrado.	8
2	2.3	Var	iables registradas	8
	2.3.	.1	Cobertura	8
	2.3.	.2	Medición del peso de los lisímetros.	9
	2.3.	.3	Precipitación y riego.	9
	2.3.	4	Largo máximo de hoja por lisímetro.	10
	2.3.	.5	Temperatura.	10
3.	AN	ÁLI	SIS DE RESULTADOS	12
3	3.1	Ten	nperatura ambiental y precipitación.	12
3	3.2	Cob	pertura	13
3	3.3	Pes	o lisímetros	14
3	3.4	Lar	go máximo de hoja	16
3	3.5	Bio	masa generada	17
3	3.6	Aná	ílisis estadístico	18
4	CO	NCI	LUSIONES Y RECOMENDACIONES	22
4	l.1.	Con	nclusiones	22
4	1.2.	Rec	omendaciones	23
RE	FER	ENC	CIAS	24

,							
INDI	$C\mathbf{F}$	$\mathbf{D}\mathbf{E}$	FI	CT.	ID	٨	C

Figura 1: Medición de la hoja.	10
Figura 2: Temperatura – Precipitaciones	12
Figura 3: Porcentajes de cobertura semanales	14
Figura 4: Pesos lisímetros.	15
Figura 5: Largo máximo promedio de hoja para cada concentración	16
Figura 6: Cantidad de biomasa generada para cada concentración	17
Figura 7: Tipos de malezas presentes	18
Figura 8: Coeficientes de Correlación de Spearman.	19
Figura 9: Máximo largo de hoja v/s Máxima cobertura	19
Figura 10: Relación cobertura vegetal final con contenido de biosólidos	20
Figura 11: Relación biomasa seca generada con el contenido de biosólidos	21
ÍNDICE DE TABLAS	
Tabla N° 1: Composición de los Biosolidos	6
Tabla N° 2: Tasa de riego promedio semanal	9

1

Autor: Tomás Sebastián Rocha Saavedra.

Departamento de Ingeniería Civil y Ambiental, Universidad del Bío-Bío

Correo Electrónico: tomasrochasaavedra@gmail.com

Profesor Patrocinante: Álvaro Suazo Schwencke.

Departamento de Ingeniería Civil y Ambiental, Universidad del Bío-Bío.

Correo Electrónico: asuazo@ubiobio.cl

RESUMEN

Los lodos generados en el tratamiento de aguas residuales están aumentando considerablemente. Además, eliminarlos en rellenos sanitarios no es la solución más viable. Por lo tanto, existe la necesidad de darles un uso que sea más accesible con el medioambiente. Es así, como la idea principal de esta investigación es analizar el efecto que tendrá mezclar suelo con biosólidos en la germinación de la Dichondra (Dichondra Repens). Para ello, se determinó 5 concentraciones distintas de biosólidos, de 0%, 30%, 50%, 70%, y 90%, las que se dispusieron en 26 lisímetros distintos. Se midieron variables, como la humedad de los lisímetros, porcentaje de cobertura, tamaño de la hoja más grande, temperatura y precipitación y la cantidad de biomasa generada.

Una vez analizados todos los registros de variables obtenidas, se puede decir que un aumento en la cantidad de biosólidos, tendrá como consecuencia un mayor porcentaje de cobertura vegetal, mayor cantidad de biomasa generada y un tamaño mayor de hoja. Entonces se llega a la deducción que los biosólidos son muy buenos fertilizantes, debido a su gran cantidad de nutrientes y materia orgánica, que favorecen la germinación y crecimiento de la Dichondra.

Palabra claves: Germinación, Dichondra repens, Biosolidos, Crecimiento.

 N° de palabras: 6059 palabras + 13 figuras/tablas*250 = 9309 palabras totales.

GERMINATION AND GROWTH OF DICHONDRA IN MIXTURES OF SOIL AND BIOSOLIDS

Author: Tomás Sebastián Rocha Saavedra.

Civil and Environmental Ingenineering Department, University of the Bio Bio

Email: tomasrochasaavedra@gmail.com

Advisor: Álvaro Suazo Schwencke

Civil and Environmental Ingenineering Department, University of the Bio Bio

Email: asuazo@ubiobio.cl

ABSTRACT

The sludge generated in wastewater treatment are increasing considerably. In addition, disposal in landfills is not the most viable solution. Therefore, a need exists for them to use it more accessible to the environment. The main idea of this research is to analyze the effect of the soil and biosolids mix will have of the germination of Dichondra (Dichondra repens). For this purpose, five different concentrations of biosolids, 0%, 30 %, 50%, 70% and 90, which are arranged in 26 different lysimeter. Variables are measured, such as lysimeters water content, percentage of coverage, size of the largest outbreak, temperature and rainfall and the amount of biomass generated.

Finally once analyzed all records of variables obtained, we can say that an increase in the amount of biosolids present will result in a greater amount of vegetation cover, more biomass generated, and a larger size outbreak. Then you get to deduct the biosolids are very good fertilizer, due to its large amount of nutrients and organic matter, which favor the germination and growth of the dichondra.

Keywords: Germination, Dichondra repens, Biosolids, Growth.

1. INTRODUCCIÓN

Para detener la contaminación con aguas residuales en océanos, ríos, lagos y otros cuerpos de agua, es necesario tratarlas mediante plantas de tratamiento, cuya función principal es la de generar un efluente reutilizable y amigable con el medioambiente, el que posteriormente puede ser depositado en ríos o lagos. Por otro lado, el tratamiento de estas aguas tiene como resultado la producción de biosólidos, lo que se pueden convertir en otra fuente de contaminación ambiental.

Durante el 2013 se autorizaron siete nuevos sistemas de tratamiento de aguas servidas, lo cual permitió aumentar la cobertura de este servicio a un 99,9% a nivel nacional, superior al año anterior, que correspondió a 99,8% (SISS, 2013). Con la incorporación de estos nuevos sistemas, al 31 de diciembre del año 2013, el total de plantas de tratamiento de aguas servidas autorizadas era de 280 (SISS, 2013), las que mayoritariamente operan mediante la tecnología de lodos activados.

La cantidad de lodos generados por las plantas de tratamiento en el país, durante el año 2012 fue de aproximadamente 117.000 Ton/año (SISS, 2012). Respecto a la disposición final de estos lodos, la mayoría de las PTAS del país los disponen en rellenos sanitarios. También existen casos, en que los lodos se organizan en mono rellenos independientes, o se aplican al suelo para encontrarles algún uso.

El problema más grande que existe en la producción de los biosólidos, es ver qué hacer con ellos, luego de que se encuentran meses en las canchas de acopio. Por lo tanto, surge la necesidad de buscar métodos, que puedan ser utilizados de forma más simple y sencilla, con el propósito de aprovechar su gran contenido de nutrientes, y la gran capacidad que tienen para retener líquido. Además la materia orgánica presente ayuda a mantener la porosidad del suelo, ya que mantiene las raíces de las plantas oxigenadas. Entonces existe la posibilidad de retornar al suelo, con tal de ser insertos en ciclos biológicos y ecológicos, que son de vital importancia para el planeta.

Por otro lado existen otros usos que se dan a los biosólidos como, recuperador de suelos degradados, recubrimiento interno o final en rellenos sanitarios y para elaborar materiales de la construcción.

1.1.Justificación del tema.

Los biosólidos constituyen un residuo del tratamiento de las aguas residuales municipales. Para mejorar su sustentabilidad es necesario buscar aplicaciones que permitan darle otros usos. Si bien se ha demostrado que al aplicar biosólidos en suelos se tienen mejores desarrollos de otras especies, como Trifolium Repens (Pleticosic, 2014) y Aeonium Spathulatum (Hernández, 2011), es necesario investigar si los biosólidos también benefician el crecimiento de la Dichondra. Dado que la dichondra no distingue el tipo de suelo, consume poca agua comparada con otros céspedes y tiene una altura muy pequeña, por lo que no requiere ser cortada

1.2. Objetivos.

1.2.1 Objetivo general.

Analizar la germinación y crecimiento de la Dichondra, en mezclas de suelo y biosólidos a distintas concentraciones.

1.2.2 Objetivos específicos.

- Reconocer las variables que inciden en el crecimiento de la Dichondra.
- Analizar la germinación y crecimiento de la Dichondra en recipientes sin biosólidos
- Registrar la germinación y crecimiento de la Dichondra en mezclas de suelo y biosólidos, a distintas concentraciones.
- Comparar la germinación y crecimiento de la Dichondra entre un suelo sin biosólidos y sus distintas concentraciones.

Universidad del Bío-Bío.Sistema de Bibliotecas - Chile

2. METODOLOGÍA

Para poder lograr los objetivos se empleó lisímetros en las inmediaciones de la Universidad

de Bío-Bío, los que fueron cercados y puestos encima de unos pallets para que no quedaran

a nivel de terreno.

2.1 Materiales.

Los principales materiales son suelo, biosólidos y semillas.

2.1.1 Caracterización del Suelo.

Para esta experiencia se empleó un suelo característico de la región del Biobío. Para ello

fue necesario extraer suelo de las inmediaciones de la universidad del Biobío. Este suelo se

utilizó en experiencias anteriores como Pineda (2014), Pleticosic (2014), Solar (2012),

entre muchos más. La humedad natural del suelo se calculó según la norma NCh 1515 of

79, la cual fue de un 6%.

Las características del suelo, extraídas de Solar (2012), son:

Clasificación U.S.C.S: Arena Limosa (SM)

 \triangleright Densidad natural seca: 1254 kg/m^3

Densidad máxima compactada seca: 1683 kg/m³

Límite líquido: 12,8%

➤ Límite plástico: 5,19%

➤ Índice de plasticidad: 7,61

2.1.2 Biosólidos.

Los biosólidos son la materia orgánica que resulta del tratamiento de aguas residuales. En

la región del Biobío, la responsable del tratamiento de aguas residuales es la empresa

ESSBIO, la cual tiene una planta de tratamiento de aguas residuales (PTAR) ubicada en la

comuna de Hualpén. Esta planta genera lodos en todos sus procesos. Para que puedan ser

utilizados tienen que ser tratados. Para ello, se comienza con la estabilización, proceso que

tiene por objeto, reducir la presencia de agentes patógenos y olores desagradables, mediante

las técnicas de estabilización cómo: digestión anaeróbica, digestión aeróbica y

estabilización con cal. Finalmente los lodos resultantes tienen que ser secados, para ir dejándolos en las canchas de acopio, y así puedan ser utilizados.

Los lodos provenientes de la planta de tratamientos de aguas residuales cumplen satisfactoriamente con el Decreto Supremo N°4 (2009), en el que queda clasificado como un lodo tipo B. En la Tabla 1 se muestra la composición de este lodo.

Tabla N° 1: Composición de los Biosolidos

Parámetros	Biosólidos PTAR Hualpén
Nitrógeno Total (%)	4.65
Nitrógeno Disponible (ppm)	133
Fósforo Total (%)	1.14
Fósforo Disponible (ppm)	712
Potasio Total (%)	0.17
Potasio Disponible (ppm)	615
pН	6
Materia Orgánica (SSV) (%)	64.7
*Humedad (%)	82

(Fuente: Pleticosic, 2014)

2.1.3 Especie seleccionada.

La especie seleccionada para esta experiencia fue la Dichondra Repens, comúnmente conocida como Oreja de Ratón. Pertenece a la familia de las Convolvulaceae y es una de las pocas especies utilizadas para césped, que no pertenece a la familia de las Graminea. Se caracteriza por no ser exigente en suelos, soportar muy bien la sombra, consume muy poca agua, resistir temperaturas de -9°C y desarrollarse muy bien en zonas húmedas. Se recomienda la siembra en época primaveral. No es muy resistente a pisoteos. No requiere ser cortada con mucha frecuencia al ser una planta rastrera. Es de crecimiento lento y en existencia de riego excesivo favorecerá la aparición de la maleza (INFOJARDIN, 2014). La dosis recomendada está entre $10 g/m^2$ y $20 g/m^2$ (ANASAC, 2014).

Universidad del Bío-Bío.Sistema de Bibliotecas - Chile

2.2 Instalación de lisímetros.

Los lisímetros utilizados son baldes de 1 galón, aproximadamente de 4 litros. Las características de los lisímetros, son las siguientes:

Diámetro: 19 cm

Altura total: 18 cm

Altura utilizada: 17 cm

Volumen utilizado: $3,76 m^3$

2.2.1 Llenado y compactación de los lisímetros.

La densidad a utilizar para la compactación del suelo será una aproximación del suelo real. Los lisímetros se compactaron asumiendo un rango de 65% a 75% en relación a la densidad máxima compactada seca (DMCS) de suelo (Beroiz, 2013). El suelo es de fácil compactación, por lo que se realizó bajo un proceso artesanal golpeando el lisímetro con la primera capa en su interior para que quedara bien densificado. Todos los lisímetros se llenaron en dos capas de suelo, dejando dos centímetros para ir colocando las diferentes mezclas de suelo- biosólidos, según corresponda. Para asegurar que la unión de estas capas fuera lo más monolítico posible, se escarificó el suelo previamente a la colocación de la siguiente capa.

2.2.2 Porcentaje de biosólidos.

La mezcla de biosólidos y suelo se aplicó en los 2 centímetros superficiales de cada lisímetro. Los porcentajes de biosólidos utilizados, en base de peso húmedo, fueron los siguientes: 0%, 30%, 50% 70% y 90%, respectivamente. No se utilizó un 100%, debido a que la humedad de los biosólidos era tan alta, que dificultaba su manipulación. Además el suelo al contener una cantidad de limo, ayudó a quitarle un poco de humedad a los biosólidos. Por otro lado se tiene que con tres datos se puede visualizar el comportamiento que tiene una variable, por ello se decidió tener 5 repeticiones para 0% de biosólidos, 3 para 30% de biosólidos, 5 para 50% de biosólidos, 3 para 70% de biosólidos y 5 para 90% de biosólidos. Además en cada repetición se agregó un lisímetro sin siembra, para visualizar el comportamiento de los biosólidos sin siembra. Entonces se llega a un total de 26 lisímetros utilizados en esta experiencia.

El sembrado es una etapa de cuidado, ya que el objetivo es que la Dichondra logre germinar. Para ello, se debe proteger la semilla de agentes que impidan alcanzar dicho objetivo. El proceso de sembrado se realizó en una sola etapa, logrando la totalidad de los lisímetros en un solo día, para obtener resultados comparables.

La experiencia se inició el 9 de octubre del 2014. El sembrado se realizó de la siguiente manera:

- Se dejó 0,5 cm libres de superficie.
- El suelo fue arado para la incorporación de las semillas, con surcos de aproximadamente 5 mm.
- La razón de siembra fue de 15 g/m^2 .
- La técnica de siembra fue la del voleo, la cual consiste en dejar caer las semillas en forma de fina lluvia.
- Se cubrieron las semillas con una capa de mezcla suelo-biosólidos de 0,5 cm, la que se compactó manualmente, para que quedaran protegidas y en íntimo contacto con el suelo.
- Finalmente el riego debe ser fino y cercano para no remover la semilla.

En una primera instancia fueron rotados para que les llegara la misma cantidad de luz, sombra y viento, luego de un mes aproximadamente, no se rotaron más, ya que la luz y sombra que les llegaba era la misma para todos los lisímetros. En caso de aproximarse una lluvia se cubrieron los lisímetros, ya que la cantidad de agua regada es controlada. Finalmente a los 26 lisímetros se les entregó cinco porcentajes distintos de biosólidos para un mismo volumen, y una misma tasa de riego.

2.3 Variables registradas.

2.3.1 Cobertura

La medición de la cobertura se realizó una vez por semana, mediante registro fotográfico, con el fin de observar el crecimiento de la Dichondra. Para cuantificar el porcentaje de cobertura se utilizó un programa llamado Cobcal, que consiste en un software basado en la colorimetría y su única función es la de estimar el porcentaje de cobertura. Además,

permite diferenciar entre la maleza y el cultivo sembrado, mediante el color que estos tengan, siempre que sea posible detectar variaciones de color y suelo.

Antes de desarmar los lisímetros y luego de haber eliminado toda la maleza se pudo visualizar con mayor facilidad el porcentaje de cobertura que tuvieron las distintas concentraciones.

2.3.2 Medición del peso de los lisímetros.

La medición de los pesos fue realizada dos días a la semana, en similar horario, y antes de ser regados, para ver si era posible visualizar algún cambio que pudo haber ocurrido por la temperatura, tasa de riego o precipitación que existió. Se utilizó una balanza de $30 \text{ kg} \pm 1 \text{ g}$, la que se colocaba en un lugar plano y cerca de los lisímetros.

2.3.3 Precipitación y riego.

El riego fue realizado todos los días, a una misma tasa y a una similar hora, incluyendo los fines de semana, debido al exceso de calor, que pudo haber secado la planta, si esta no hubiera estado bien hidratada. Entonces había que encontrar un punto, que no dejara el suelo con muy poca agua o con exceso, en este caso saturado. Para el riego se utilizó una regadera y una probeta de 1000 ml, para poder controlar el agua incorporada a cada lisímetro.

Para cada precipitación pronosticada, los lisímetros fueron cubiertos con un plástico. Cuando existía un evento de precipitación corto, se dejaban descubiertas y la cantidad de agua caída se visualizaba, a través de la estación Estero Nonguén frente a la Universidad del Bío-Bío, de la Dirección General de Aguas.

En la tabla 2 se muestra la cantidad de agua regada.

Tabla N° 2: Tasa de riego promedio semanal

Semana	Riego (ml)
1	140
2	105
3	75
4	110
5	120
6	125
7	130
8	120
9	110

(Fuente: Elaboración propia)

2.3.4 Largo máximo de hoja por lisímetro.

El largo máximo de hoja por cada lisímetro fue medido una vez a la semana, para lo cual, se utilizó una huincha de medir. Esta medición fue realizada en el sentido longitudinal de la hoja, para poder tener una referencia de cuanto iban a influir los biosólidos. Entonces el porcentaje de cobertura, se podía ver influenciado por el tamaño de la hoja, ya que al ser más largo, se tendría un mayor porcentaje de cobertura. En la figura 1 se aprecia con claridad cómo fue la medición realizada, la letra x representa el valor obtenido en cada lisímetro.

Figura 1: Medición de la hoja. (Fuente: Elaboración propia)

2.3.5 Temperatura.

La temperatura fue medida todos los días, con tal de ver si era un factor determinante en la germinación de la Dichondra, ya que en estudios anteriores (Pineda, 2014) se sembró esta planta en Otoño, la cual germinó con muchas dificultades y en pocas cantidades. Además, la temperatura afecta en la evapotranspiración que tenga la planta, o en el caso de los lisímetros que no tuvieran semillas, los cuales se verían afectados por la evaporación. La temperatura fue enviada desde la Dirección Meteorológica de la Armada de Chile. Los datos entregados fueron de Talcahuano, debido a que ellos no tenían datos medidos de Concepción, pero la diferencia de grados entre Talcahuano y Concepción es \pm 1 °C, lo que no genera grandes diferencias.

2.3.6 Biomasa generada.

Esta variable se midió al final de la experiencia. Para ello se necesitó una pesa de alta precisión, ya que en algunos casos, la cantidad de maleza o dichondra era escaza. Además

11

se necesitó un horno para poder extraer el agua que contenían las plantas, y así, poder visualizar el contenido real de humedad más biomasa seca generada.

2.3.7 Análisis estadístico.

Para el análisis estadístico se estudiaron todas las variables medidas en esta experiencia. En este análisis se realizó una regresión lineal y correlación de Spearman, en las cuales se puede apreciar claramente la interacción entre las variables involucradas. -

La correlación de Spearman sirve para observar la relación que tienen estas distintas variables. Para ello se utilizó el programa llamado InfoStat.

3. ANÁLISIS DE RESULTADOS

Los resultados obtenidos durante la experiencia de 63 días fueron cobertura vegetal, peso de los lisímetros, precipitaciones y riego, crecimiento máximo de las hojas, temperatura y la cantidad de biomasa generada en cada lisímetro. Estos datos son analizados con el fin de obtener una respuesta sobre la influencia de los biosólidos en el desarrollo de la Dichondra.

3.1 Temperatura ambiental y precipitación.

La temperatura y precipitación fue un factor determinante en la germinación de la Dichondra. Esta experiencia fue realizada desde el 9 de octubre hasta el 10 de diciembre, del año 2014.

En la figura 2 se puede apreciar que al comienzo de la experiencia se tuvo temperaturas relativamente altas, las que ayudaron a que la semilla germinara. Además se puede apreciar claramente que estas temperaturas fueron siempre en alza, lo que generó condiciones aptas para la germinación y crecimiento de la Dichondra. Con respecto a las precipitaciones, éstas no eran preponderantes en este estudio, ya que cada vez que había pronóstico de lluvia, los lisímetros eran cubiertos con un plástico para evitar infiltraciones. Sin embargo, hubo 2 días de lluvia que no se cubrieron, lo que representó un riego de 100 ml aproximadamente.

Estas temperaturas y precipitaciones tienen una influencia muy grande en las variaciones de los pesos registrados en cada lisímetro. Esto se aprecia con mayor claridad en el ANEXO D.

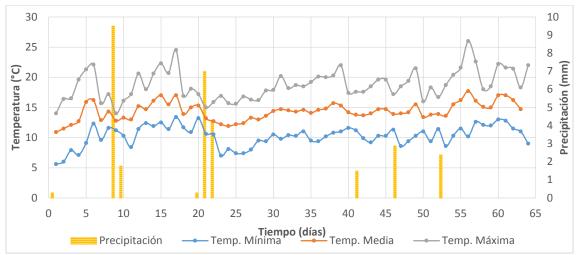


Figura 2: Temperatura – Precipitaciones. (Fuente: Elaboración propia).

3.2 Cobertura

Mediante el análisis de las 260 fotografías obtenidas, se midió el porcentaje de cobertura vegetal en cada lisímetro. En la figura 3 se observa la evolución del porcentaje de cobertura durante los 63 días que duró la experiencia. Cabe mencionar que en la práctica se determinó publicar sólo los valores máximos, mínimos y promedio por concentración.

En la figura 3 se aprecia que en las tres primeras semanas hubo un crecimiento muy pequeño y parecido en todos los lisímetros. Posteriormente se observó que los lisímetros que contienen 50% biosólidos, tuvieron un alto porcentaje de cobertura en el inicio, comparado con las demás concentraciones. Desde la séptima semana, se puede observar la influencia de los biosólidos en el crecimiento de la Dichondra, ya que a mayor concentración, mayor fue el porcentaje de cobertura vegetal. Además los lisímetros que contenían un 90% biosólidos, tuvieron un crecimiento más exponencial que el resto de los lisímetros, ya que llegó a tener un 91% de cobertura vegetal aproximadamente. Por otro lado los lisímetros sin contenido de biosólidos, tuvieron una germinación rápida, pero un crecimiento lento. Además el porcentaje de cobertura fue un 20% aproximadamente, el menor registrado comparado con los demás lisímetros.

Cuando se finalizó la experiencia se volvió a tomar registro fotográfico, pero se retiró la maleza presente en cada lisímetro. Sin embargo, se puede notar que todos los porcentajes de cobertura aumentaron, debido a que los brotes de la dichondra se alojaron en la sombra generada por la maleza.

Según ANASAC, productor de estas semillas, el tiempo de germinación es de 15 a 21 días, en cambio, en esta experiencia la semilla germinó en 7 días aproximadamente, debido al riego, luz y calor excesivo que existía. Además dice que la Dichondra tiene que ser fertilizada desde su siembra para asegurar un buen y rápido crecimiento de la planta.

El detalle de todos los porcentajes de cobertura se encuentra en el ANEXO C.

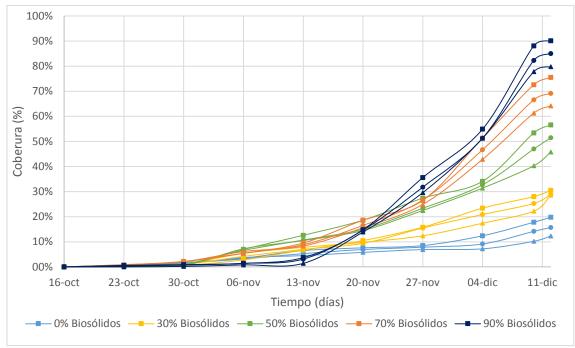


Figura 3: Porcentajes de cobertura semanales. (Circulo: valor medio, Rectángulo: valor máximo y Triangulo: valor mínimo) (Fuente: Elaboración propia)

3.3 Peso lisímetros

El peso de los lisímetros es la variable más relevante en este estudio, ya que ayuda a comprender la influencia de los biosólidos aplicados, dado que esta variable muestra la cantidad de agua retenida en cada lisímetro. Para ello se realizaron 2 muestras por semana para cada lisímetro, registrando su peso.

En la figura 4 se aprecia que en la primera semana el peso aumentó considerablemente en todos los lisímetros, lo que favoreció a la germinación de la semilla.

En los lisímetros que no contenían biosólidos se puede notar que se encuentran los pesos más bajos de la experiencia, siendo el peso máximo de esta concentración, el que tiene un mayor peso, comparado con los valores mínimos de peso. Esto ocurre cuando existe una mayor cantidad de plantas, ya que ayuda a la evapotranspiración de ella y lo mismo ocurre con los lisímetros que contienen un 30% de biosólidos, pero dentro del último mes, se puede observar que tuvieron una baja significativa en sus pesos, ya que se vieron afectados por una gran cantidad de maleza. Lo que conlleva una mayor evapotranspiración de estas plantas, debido a las altas temperaturas presentes.

Además se aprecia que con los otros lisímetros ocurre lo contrario, debido que los pesos con mejor porcentaje de cobertura están por sobre los pesos que tienen peor porcentaje de cobertura. Si bien anteriormente se dijo que el peso estaría afectado por la evapotranspiración de la planta, en estos casos se verifica la influencia de los biosólidos, ya que ayudaron a retener el agua regada, lo que ocurre porque los biosólidos generan una capa impermeable, en la que el agua se ve imposibilitada de evaporarse.

Por otro lado se pudo verificar que los biosólidos ayudan a retener el agua, debido a que cuando se desarmaron los lisímetros, se pudo apreciar que el material ubicado debajo de la capa de biosólidos, se podía desprender con mayor facilidad del lisímetro, ya que el suelo estaba más húmedo. Por otro lado los lisímetros que no contenían biosólidos tenían el suelo más seco y compactado, además costaba mucho trabajo retirar el material.

El detalle de todos los pesos de todos los lisímetros se encuentra en el ANEXO D.

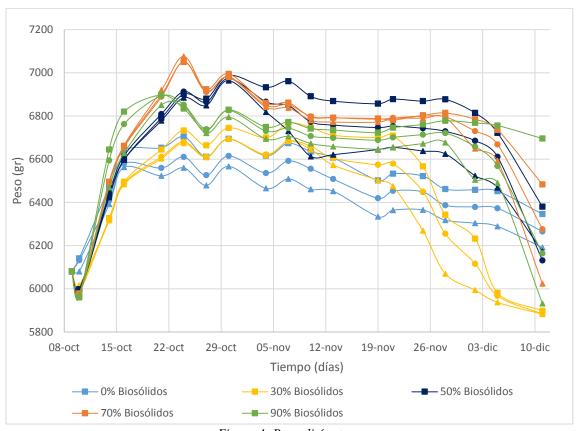


Figura 4: Pesos lisímetros. (Circulo: valor medio, Rectángulo: valor máximo y Triangulo: valor mínimo) (Fuente: Elaboración propia)

3.4 Largo máximo de hoja

El largo máximo de hoja es una variable que fue relevante a partir de la quinta semana, ya que antes no se podía apreciar mayor diferencia de tamaño entre las hojas de cada lisímetro. Por otro lado en la mayoría de los lisímetros aún existía un brote guía, el que crece cuando la semilla germina, el cual tiene forma alargada y puntiaguda y si es medido no será determinante en el estudio.

La figura 5 ilustra el tamaño máximo, mínimo y promedio de las hojas semanales para cada concentración.

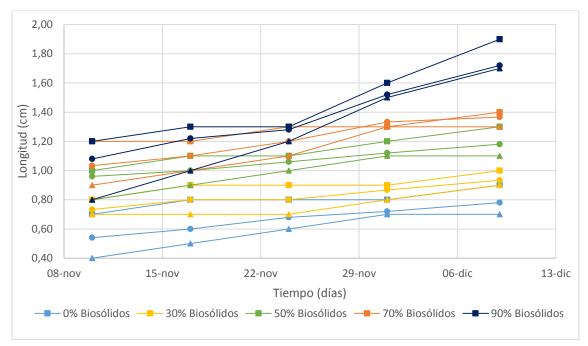


Figura 5: Largo máximo promedio de hoja para cada concentración. (Circulo: valor medio, Rectángulo: valor máximo y Triangulo: valor mínimo) (Fuente: Elaboración propia)

En la figura 5 se logra apreciar claramente la influencia de los biosólidos como fertilizante, debido a su gran poder nutritivo y capacidad de retener agua, ya que se tuvo mayores tamaños de hoja en contracciones donde había gran cantidad de biosólidos. Además combinado con el análisis del porcentaje de cobertura, se pudo verificar que el tamaño de la hoja es directamente proporcional con el porcentaje de cobertura, ya que a mayor porcentaje de cobertura, mayor es el tamaño de la hoja. Por otro lado si se observa la diferencia entre el inicio y final de la medición, se logra apreciar que las concentraciones más altas tienen una diferencia mucho mayor en comparación a los lisímetros que

contenían 0% biosólidos, 30% de biosólidos y un 50% de biosólidos, sin embargo, las últimas tres concentraciones tienen una diferencia de tamaño muy parecida.

El detalle de todos los largos de hoja por lisímetro se encuentra en el ANEXO E.

3.5 Biomasa generada

La biomasa generada es una variable muy influyente, medición que sólo se pudo realizar cuando se terminó la experiencia, debido a que se está pesando la cantidad de dichondra generada en cada lisímetro.

Como el estudio asimila la realidad, también se midió la cantidad de maleza generada y con los datos obtenidos se calculó el promedio de biomasa para cada concentración de biosólidos y así se generó la figura 6, en la que se muestra la cantidad de biomasa generada con respecto a las distintas concentraciones de biosólidos.

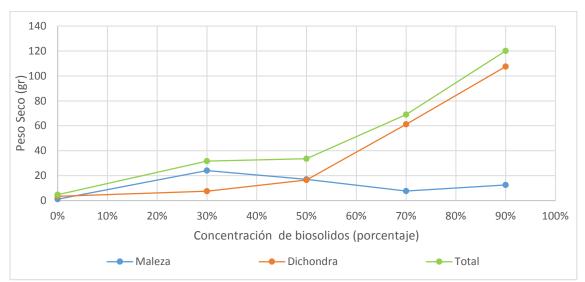


Figura 6: Cantidad de biomasa generada para cada concentración. (Fuente: Elaboración propia)

En la figura 6 se puede apreciar claramente que para un 0% de biosólidos se tiene una mayor cantidad de Dichondra que de maleza, fenómeno que también ocurre cuando se presenta una concentración de 70% y 90% de biosólidos. En cambio, cuando se tiene un 30% de biosólidos ocurre lo contrario, ya que los biosólidos traen algún tipo de planta ajena al estudio, debido a que se encuentran en una cancha de acopio por meses en la PTAR y en la superficie de ellos, se pudo haber alojado alguna semilla.

Para la concentración de un 50% de biosólidos, se observa que la cantidad de maleza y Dichondra generada es muy parecida. Por otro lado para las concentraciones de 70% y 90%

de biosólidos, se puede verificar que al aplicar los biosólidos se tuvo una gran cantidad de dichondra.

Entonces, al igual que en la variable anterior, se puede deducir que existe una relación directamente proporcional entre la biomasa de la Dichondra y el porcentaje de cobertura vegetal.

En el ANEXO F se puede observar con mayor claridad los datos obtenidos en cada lisímetro.

Mediante el registro fotográfico se pudo observar la maleza que crecía. Algunos tipos de plantas de malezas son trébol, diente de león, pasto dentado y euforbiáceo.

Figura 7: Tipos de malezas presentes. (Fuente: Elaboración propia).

3.6 Análisis estadístico

Para los análisis de regresión lineal y correlación de Spearman no se consideraron los lisímetros que no presentan siembra. Además las variables medidas fueron clasificadas como independientes y dependientes.

- *Variables independientes*: Porcentaje de biosólidos presentes.
- *Variables dependientes:* Peso promedio de los lisímetros, porcentaje de cobertura vegetal final, tamaño final de la hoja y la biomasa seca generada.

3.6.1. Correlación de Spearman

El resultado que entrega programa InfoStat es un coeficiente, que al ser cercano a 1, tiene como significado que existe una gran correlación entre las variables involucradas.

En la figura 8 se aprecia que las variables dependientes tienen gran relación con el porcentaje de biosólidos. Como el valor es positivo, esto significa que se encuentran en una relación directamente proporcional, dado que si aumenta una variable dependiente, la otra

variable independiente también aumenta. Por otro lado se puede notar una gran relación entre las variables dependientes.

	Concentración b	iosólidos	Cobertura	final	Peso promedio	Tamaño de	hoja Final	Biomasa generad
Concentración biosólidos		1,00		0,00	1,7E-04		4,4E-11	8,8E-0
Cobertura final		0,98		1,00	6,9E-05		1,3E-11	1,0E-0
Peso promedio		0,73		0,76	1,00		1,4E-03	0,0
Tamaño de hoja Final		0,95		0,96	0,65		1,00	5,5E-0
Biomasa generada		0,81		0,85	0,47		0,82	1,0

Figura 8: Coeficientes de Correlación de Spearman. (Fuente: Elaboración propia).

De la figura 9 se desprende que a medida que aumenta el porcentaje de cobertura, se tiene un mayor tamaño de hoja de la Dichondra. Sin embargo, existen algunos puntos que se encuentran más alejados de la línea de tendencia y tienen el mismo tamaño de hoja, pero debido a la cantidad de biosólidos que retuvieron una mayor cantidad de agua, estos pudieron tener un mayor porcentaje de cobertura.

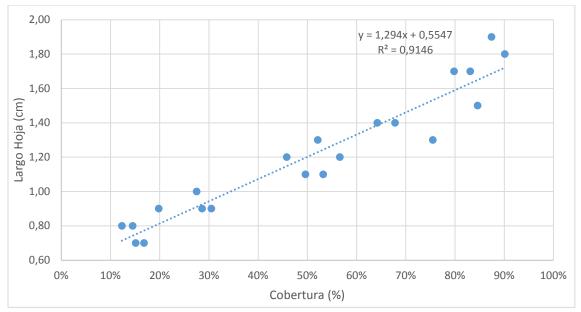


Figura 9: Máximo largo de hoja v/s Máxima cobertura.. (Fuente: Elaboración propia).

3.6.2. Regresión lineal

La regresión lineal se realizó mediante Excel. En ella se aprecia la ecuación que más se ajusta al conjunto de datos obtenidos en las mediciones de las distintas variables estudiadas. En la figura 8 se muestra la gráfica entre el porcentaje de cobertura vegetal v/s porcentaje de biosólidos utilizados en cada lisímetro.

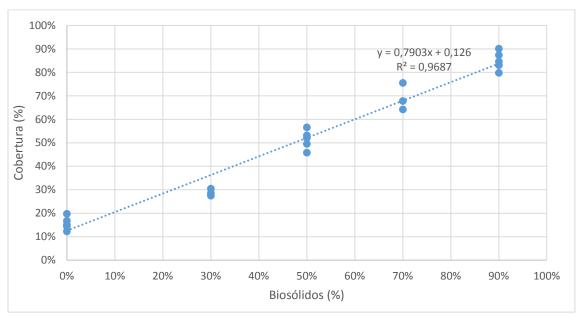


Figura 10: Relación cobertura vegetal final con contenido de biosólidos. (Fuente: Elaboración propia).

En la figura 10 se puede apreciar claramente la influencia de los biosólidos como mejorador de suelo, ya que ayudaron a retener líquido, mantener las raíces aireadas y aportaron con sus nutrientes el crecimiento de la Dichondra. Esto tiene como consecuencia un mayor porcentaje de cobertura vegetal, donde había un mayor porcentaje de biosólidos. Además los lisímetros que contienen 30% de biosólidos tuvieron una gran cantidad de maleza. Entonces la Dichondra presente tuvo una menor cantidad de luz, que tiene como consecuencia un menor porcentaje de cobertura.

Por otro lado se puede apreciar claramente en la figura 11 que la cantidad de biosólidos generados son directamente proporcional con la cantidad de biomasa seca generada. Eso se debe por lo dicho anteriormente sobre los beneficios que tuvo el aplicar biosólidos en la cantidad de porcentaje de cobertura vegetal. Entonces se puede observar un mayor porcentaje de cobertura cando se tiene una mayor cantidad biomasa seca generada. Además

se puede notar que al aplicar más biosólidos se tiene una mayor diferencia de biomasa seca generada entre los lisímetros de igual porcentaje de cobertura, aunque comparado con los porcentajes más bajos existe una diferencia significativa.

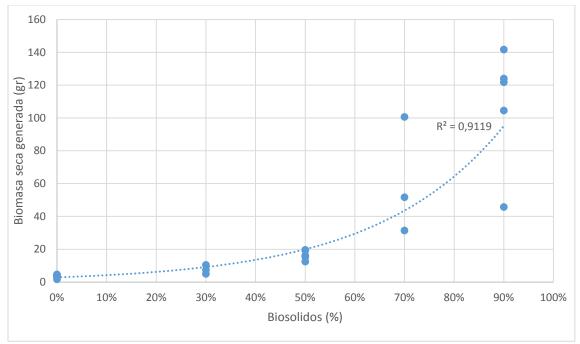


Figura 11: Relación biomasa seca generada con el contenido de biosólidos. (Fuente: Elaboración propia).

4 CONCLUSIONES Y RECOMENDACIONES

4.1. Conclusiones

Haciendo un análisis global se deduce que el uso de biosólidos como mejorador de suelo es bueno, ya que comparando las variables medidas se pudo verificar los beneficios que éste tenía, dado que se aseguró una geminación y crecimiento rápido de la Dichondra, lo que ocurre por la alta cantidad de nutrientes que los biosólidos contienen y la capacidad que tienen para retener líquido, para que no exista evaporación del agua regada, por ende, la planta se tiene que regar con menos frecuencia.

La germinación de la semilla se vio influenciada por la temperatura y la cantidad de biosólidos que tuvo cada lisímetro, ya que ayudó a que la semilla se encontrara rodeada de agua, por la capacidad que tiene para retener líquido. Aunque las temperaturas fueron altas, se logró una germinación rápida, ya que dentro de la primera y segunda semana, existía el brote guía en la mayoría de los lisímetros.

Los pesos de todos los lisímetros llegaron a un valor máximo, y posteriormente se mantuvieron constantes, lo que ocurrió porque el suelo se saturó y no existió una temperatura muy alta. Si bien el último mes las temperaturas fueron en ascenso, esto generó un descenso en los pesos de los lisímetros. Sin embargo esta disminución de peso no afectó el crecimiento de la Dichondra, ya que los lisímetros con un 90% de biosólidos tuvieron el mayor porcentaje de cobertura, aunque no el mayor peso registrado. Con lo anterior se deduce que el riego no fue preponderante en el crecimiento de la planta estudiada, dado que existió un mayor crecimiento donde hubo más biosólidos, siendo que se tenía un menor peso.

Se pudo observar que el porcentaje de cobertura aumentó a medida que la cantidad de biosólidos aumentaba. Por este motivo se observó claramente que el aumento en la cantidad de biosólidos, generó un mayor tamaño de hoja y una mayor cantidad de biomasa. Además se comprueba lo dicho por el fabricante, ya que las semillas tenían que ser fertilizadas desde su siembra.

Se visualiza que las variables de cobertura, biomasa y tamaño de hoja, están fuertemente correlacionadas, ya que el porcentaje de cobertura se ve afectado por el tamaño de la hoja.

Por otro lado la cantidad de biomasa generada se vio afectada por ambas variables nombradas anteriormente. Se comprobó que la Dichondra tiene una buena adaptación a un suelo característico de la región del Bío Bío.

4.2. Recomendaciones

Luego de haber planteado todas las conclusiones, se recomienda:

- ✓ Utilizar la Dichondra con una dósis alta de biosólidos o fertilizante, para tener una germinación y crecimiento rápido.
- ✓ Estudiar la erosión en taludes a escala recubiertos con Dichondra sembrada con biosólidos, ya que al desarmar los lisímetros, las raíces de la Dichondra eran muy firmes.
- ✓ No se recomienda riego todos los días, ya que generó un exceso de maleza.

REFERENCIAS

- ANASAC (2014) [en línea]: http://www.anasacjardin.cl/producto/especies-puras/semillas-de-pasto-dichondra/ [Consulta:19 de noviembre de 2014]
- Beroiz, L. (2013). "Desarrollo del Trébol Sembrado en Taludes Para la Protección de la Erosión". Proyecto de Título Ingeniería Civil. Universidad del Bío-Bío.
- Chile, Decreto Supremo N°4. (2009). "Reglamento para el Manejo de Lodos Generados en Plantas de Tratamiento de Aguas Servidas". Ministerio Secretaría General de la Presidencia de la República.
- Dirección General de Aguas, Ministerio de Obras Públicas (DGA) (2014). [En línea] http://dgasatel.mop.cl/index.asp [consultas: 9 de Octubre del 2014 al 11 de Diciembre de 2014].
- Funcionamiento PTAR (2014) [en línea]:
 http://www.buenastareas.com/ensayos/Como-Funciona-Una-Ptar/3680716.html
 [Consulta: 17 de Noviembre de 2014]
- Hernández, D. (2011). "Erosión en Taludes de Pendiente media Tratados con Congona y Biosolidos Aplicados en Mezcla con el Suelo". Proyecto de título. Ingeniería Civil. Universidad del Bío-Bío.
- INFOJARDIN (2014) [en línea]: http://articulos.infojardin.com/cesped/dichondra_repens.htm [Consulta: 19 de Noviembre de 2014]
- InfoStat, (2010). [en línea] http://www.infostat.com.ar/ [consulta: 19 de Diciembre 2014].
- Cobcal (2014), 0Manual de Software de análisis y procesamiento de imagen digital
 Cobcal [en línea]
 http://www.cobcal.com.ar/pantallas.php> [Consulta: Diciembre de 2014].
- Norma Chilena NCh 1515 of 1979. "Mecánica de Suelos Determinación de la Humedad". Instituto Nacional de Normalización (INN).
- Pineda, F. (2014). "Análisis de Erosión Hídrica en Taludes Sembrados con Dichondra en Otoño". Proyecto de Título Ingeniería Civil. Universidad del Bío-Bío.

- Pleticosic, Y. (2014). "Germinación del Trébol en Condiciones Deficientes de Agua en Mezcla Suelo-Biosolidos". Proyecto de Título Ingeniería Civil. Universidad del Bío-Bío.
- SISS (2012), Informe de Gestión de Sector Sanitario 2012 [en línea] http://www.siss.gob.cl/577/w3-propertyvalue-3443.html [Consulta: 17 Noviembre de 2014]
- SISS (2013), Informe de Gestión de Sector Sanitario 2013 [en línea]
 http://www.siss.gob.cl/577/w3-propertyvalue-3443.html [Consulta: 17
 Noviembre de 2014]
- Solar, C. (2012). "Efectos de las Etapas de Desarrollo de Congona Sobre la Erosión Hídrica en Talud de Baja Pendiente". Proyecto de Título Ingeniería Civil. Universidad del Bío-Bío.

ANEXOS

ANEXO A: CLASIFICACIÓN SANITARIA DE LOS BIOSÓLIDOS

La clasificación sanitaria de los biosólidos debe cumplir con dos parámetros:

- Reducción del potencial de atracción de vectores (organismos capaces de transportar y transmitir agentes infecciosos)
- ❖ La presencia de patógenos.
- a) <u>Lodos Clase A:</u> Son aquellos que no tienen restricciones sanitarias para la aplicación benéfica al suelo. Los lodos Clase A deberán cumplir con uno de los siguientes requisitos, previo o simultáneamente al cumplimiento de la reducción de la atracción de vectores (DS N°4, 2009, Ministerio Secretaría General de la República).
 - Tener una densidad de coliformes fecales menor a 1.000 Número Más Probable (NMP) por gramo de lodos, base seca.
 - Tener una densidad de salmonella sp. menor a 3 NMP en 4 gramos de lodos, base seca.
 - Tener un contenido de ova helmíntica viable menor a 1 en 4 gramos de sólidos totales, base materia seca, cuyo cumplimiento se podrá demostrar mediante la aprobación por la autoridad sanitaria de las condiciones de operación de uno de los siguientes procesos de higienización: compostaje, secado térmico, tratamiento de calor o digestión aeróbica termofónica.

Son aptos para cualquier uso agrícola (cultivos hortícolas, frutícolas, forraje, fibras; árboles frutales, praderas para pastoreo, jardines, parques, áreas verdes, cementerios, etc).

b) <u>Lodos Clase B</u>: Son aquellos aptos para la aplicación benéfica al suelo, con restricciones sanitarias de aplicación según tipo y localización de los suelos o cultivos. Lodos Clase B deberán cumplir el siguiente requisito: la media geométrica de la densidad de coliformes fecales; producto del análisis de un número de muestras no inferior a siete, tomadas al momento de su uso, debe ser menor que 2.000.000 NMP por gramo de lodos en base seca (DS N°4, 2009, Ministerio Secretaría General de la República).

ANEXO B: ESTUDIO DE MECÁNICA DE SUELOS.

Los parámetros más importantes de los suelos fueron obtenidos por Solar (2012), esta caracterización se hace necesaria, es importante reconocer para que tipo de suelo se hiso la experiencia fijando los márgenes que tiene esta tesis, el comportamiento no necesariamente sería igual en un suelo arcilloso o granular. A continuación se muestran las características relevantes para el estudio.

a. Ensayo Proctor Modificado.

Para la determinación de la DMCS y la humedad óptima, fue realizado el ensayo de Proctor modificado según la norma NCh 1534 of 79 y los resultados se muestran a continuación:

Datos Molde Utilizado.

Peso= 1728,8 gr.

Volumen= $954 cm^3$.

Tabla B1. Datos Ensayo Proctor Modificado. (Fuente: Solar 2012).

Ensayo	Humedad aparente (cm3)	Peso molde + material (gr)	Peso material (gr)	Densidad humedad (kg/m3)	Densidad seca (kg/m3)	Humedad real (%w)
1	60	3599	1870	1960,38	1678,78	16,77
2	90	3637	1908	1999,81	1681,63	18,92
3	210	3619	1890	1981,34	1640,45	20,78

Siendo:

•
$$\rho_{humeda} = \frac{Peso\ material}{Volumen\ Molde} * 1000\ (\frac{kg}{m^3})$$

•
$$\rho_{seca} = \frac{\rho_{humeda}}{100 + w\%} * 100 \left(\frac{kg}{m^3}\right)$$

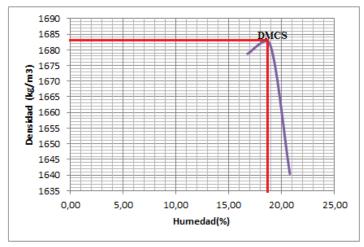


Figura B1: Curva ensayo Proctor Modificado. (Fuente: Solar 2012).

De la figura... se desprende que:

- DMCS = $1683 \frac{kg}{m^3}$
- $\omega_{óptima} = 18,5\%$

b. Granulometría

seco (gr)

Para clasificar el suelo extraído se realizó la granulometría de la muestra conforme a la norma NCh165 of 77.

Tabla B2. Granulometría. (Fuente Solar 2012).

Tamiz	Peso retenido (gr)	Porcentaje retenido (%)	Porcentaje que pasa (%)
Nº 4	0	0	100
N° 10	112,35	20,06	79,94
N° 20	0	0,00	79,94
N° 40	134,6	24,04	55,90
N° 60	0	0,00	55,90
N° 200	297,85	53,19	2,71
Suma	544,8		
Residuo (gr)	113,11		
Peso suelo	560		

- Clasificación AASHTO = Grupo A-2-4 (gravas y arenas limosas arcillosas).
- Clasificación USCS = SM (arena limosa).

c. Ensayo cono de arena

Para la determinación de la densidad in situ.se realizó el ensayo de cono de arena siguiendo las especificaciones detalladas en la NCh 1516 of 79.

Tabla B3. Datos ensayos cono de arena. (Fuente Solar 2012).

Peso arena inicial (gr)	6000
Peso arena final (gr)	2892
Peso material extraído (gr)	1609
Peso arena cono (gr)	1726
Densidad arena estándar (gr/cm3)	1,526
Volumen agujero (cm3)	905,636

De esta forma se puede obtener la densidad in situ húmeda, correspondiente a:

$$\begin{split} \rho_{humeda} &= \frac{Peso\ material\ extraído}{Volumen\ agujero} = \frac{1609}{905,636} = 1,776\ \left(\frac{gr}{cm^3}\right) \times 1000 \\ &= 1777\left(\frac{kg}{m^3}\right) \end{split}$$

Para establecer el valor de la densidad in situ seca, es necesario obtener el porcentaje de humedad (% w) de la muestra:

Tabla B4. Determinación humedad. (Fuente: Solar 2012).

Peso cápsula - material húmedo (gr)	1132,55
Peso cápsula - material seco (gr)	912,88
Peso agua (gr)	219,67
% w	19,40

Aplicando la fórmula siguiente se obtiene el valor de la densidad in situ seca:

$$\rho_{seca} = \frac{\rho_{humeda} \times 100}{100 + \%w} = \frac{1777 \times 100}{100 + 19.4} = 1488 \left(\frac{kg}{m^3}\right)$$

d. Límites de consistencia.

Se determinaron los límites de consistencia, para caracterizar el comportamiento del suelo fino en estudio, a través de la realización de los procedimientos mencionados en la norma NCh 1517 of 79.

➤ <u>Limite líquido</u>

Tabla B5. Datos ensayos. (Fuente Solar 2012).

Cápsula	Golpes (nº)	Peso cápsula (gr)	Peso material húmedo (gr)	Peso material seco (gr)	Peso agua (gr)	% w
70	19	18,15	27,57	24,70	2,87	10,41
15	40	23,32	35,84	32,23	3,61	10,07
F	22	15,37	31,70	27,56	4,14	13,06

LL = w % a los 25 golpes = 12,8 %.

Método de ensayo empleado: Mecánico

Tipo de Acanalador empleado: Tipo ASTM

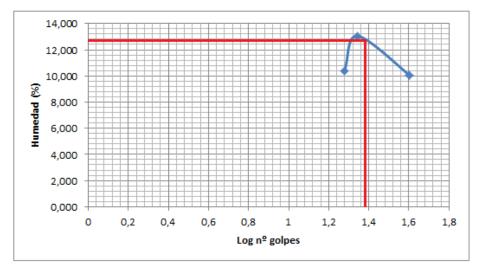


Figura B2: Determinación límite líquido. (Fuente Solar 2012).

Limite plástico

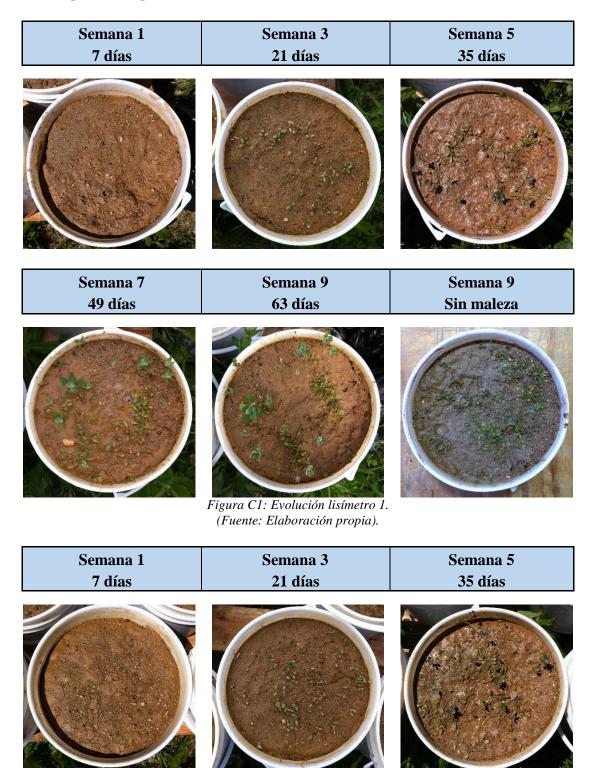
Tabla B6. Datos ensayo determinación Límite líquido. (Fuente: Solar 2012).

Cápsula	Peso (gr)	Peso cápsula + bastones húm. (gr)	Peso cápsula + bastones secos (gr)	Peso agua (gr)	Humedad (%)
14	22,52	28,34	26,87	1,47	5,19
12	20,00	30,66	28,88	1,78	5,81
a-5	17,67	24,59	22,96	1,63	6,63
				Promedio	5,87

L = 5,87%

> <u>Índice de plasticidad</u>

$$IP = LL - LP = 12.8 - 5.87 = 6.93$$


ANEXO C: COBERTURA VEGETAL

Para obtener una mayor comprensión se tiene que mostrar cual es la cantidad de biosólidos presentes en cada lisímetro.

Lisímetro	Biosólidos (%)			
1	0%			
2	0%			
3	0%			
4	0%			
5	0%			
6	0%			
7	30%			
8	30%			
9	30%			
10	30%			
11	50%			
12	50%			
13	50%			
14	50%			
15	50%			
16	50%			
17	70%			
18	70%			
19	70%			
20	70%			
21	90%			
22	90%			
23	90%			
24	90%			
25	90%			
26	90%			

Tabla C1: Cantidad de biosólidos por lisímetro. (Fuente: Elaboración propia).

C.1. Registro fotográfico

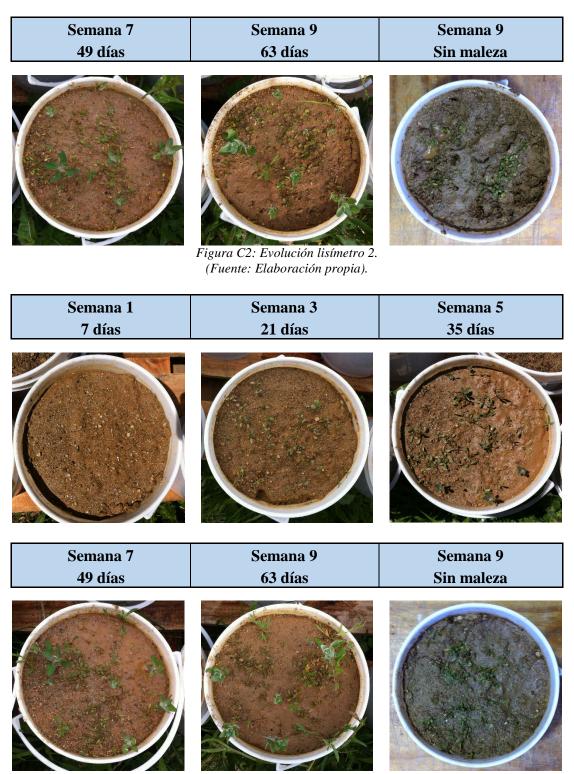
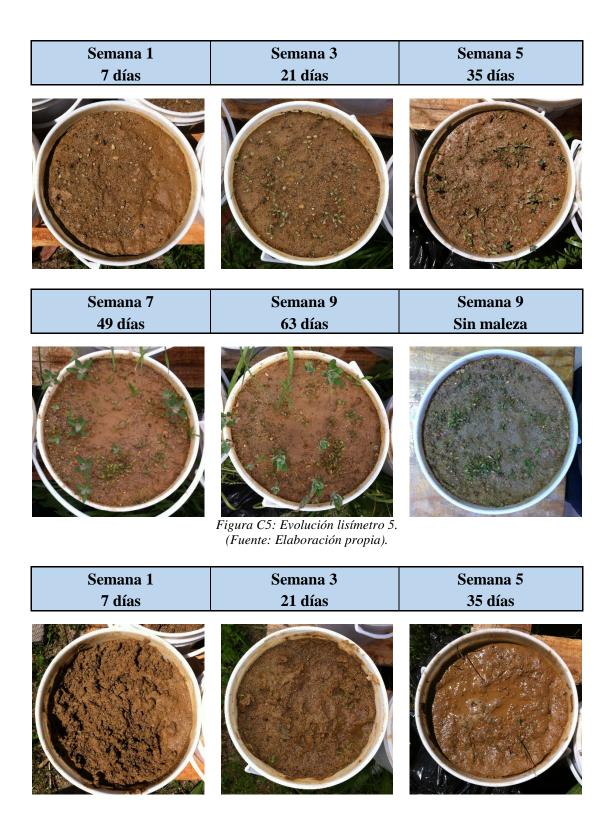



Figura C4: Evolución lisímetro 4. (Fuente: Elaboración propia).

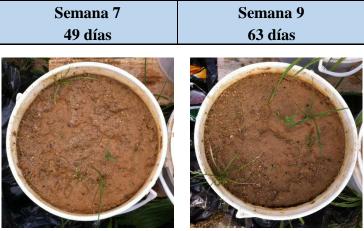


Figura C6: Evolución lisímetro 6. (Fuente: Elaboración propia).

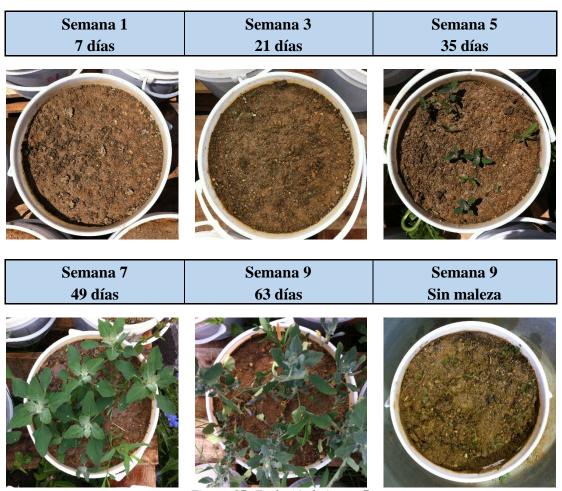
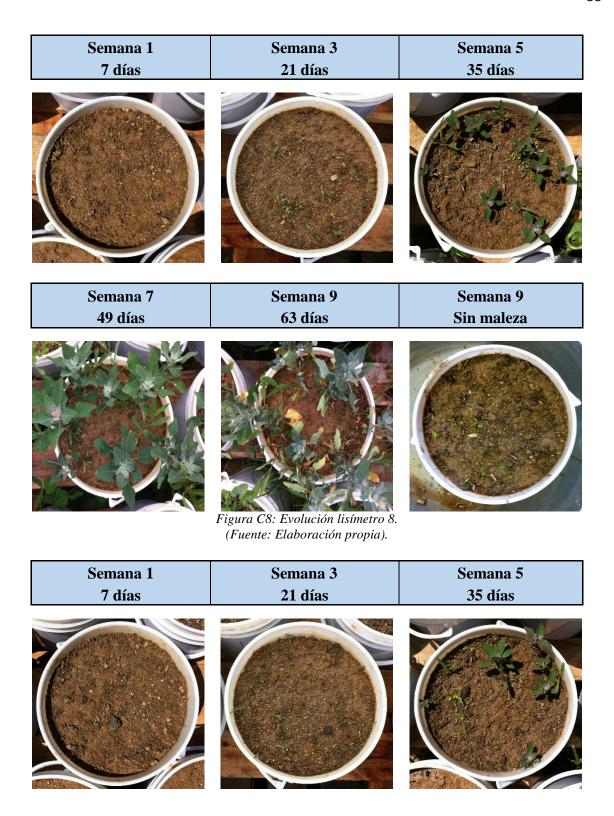



Figura C7: Evolución lisímetro 7. (Fuente: Elaboración propia).

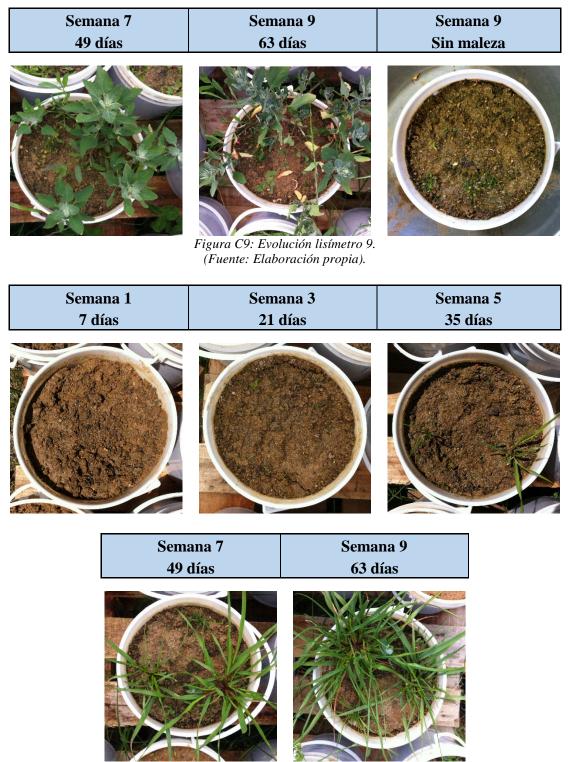
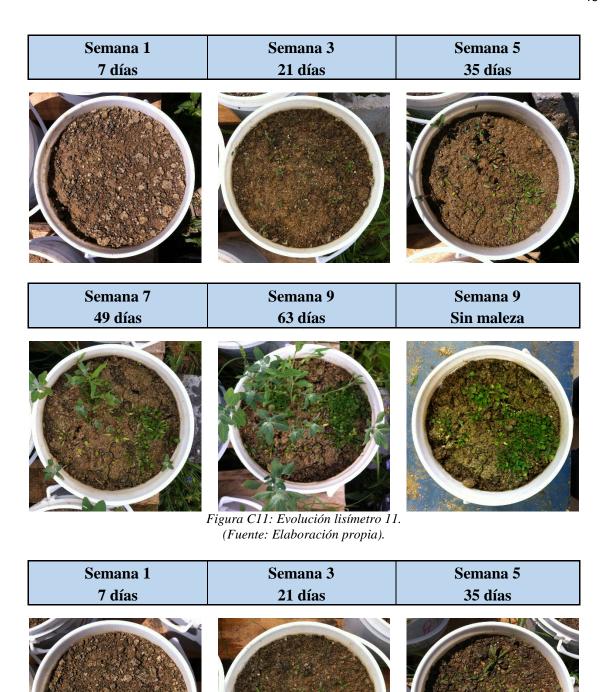



Figura C10: Evolución lisímetro 10. (Fuente: Elaboración propia).

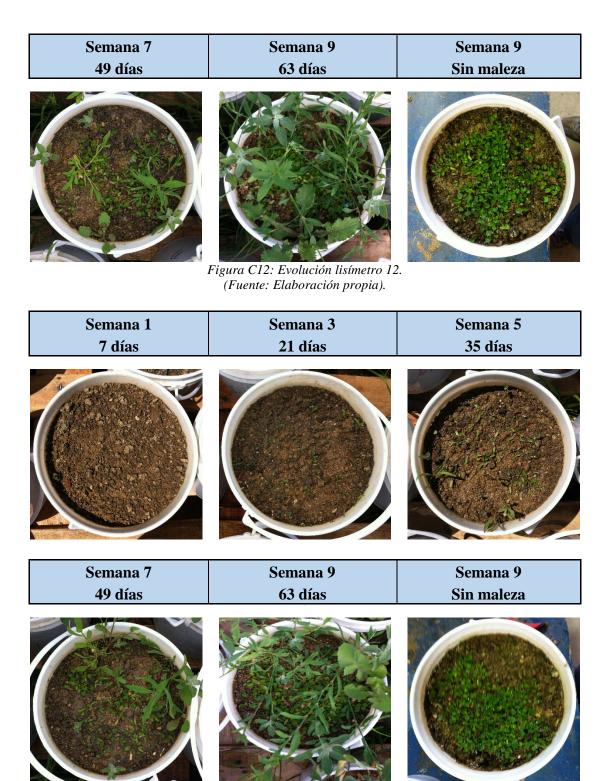
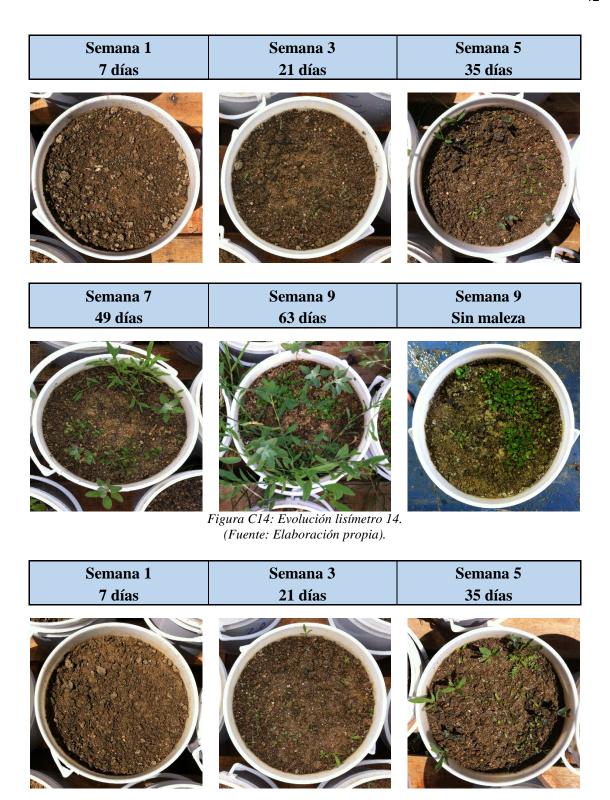



Figura C13: Evolución lisímetro 13. (Fuente: Elaboración propia).

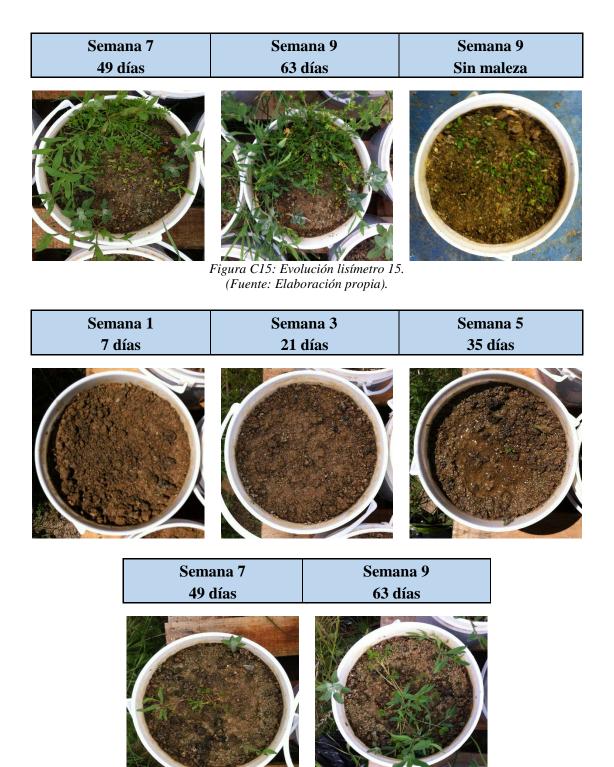
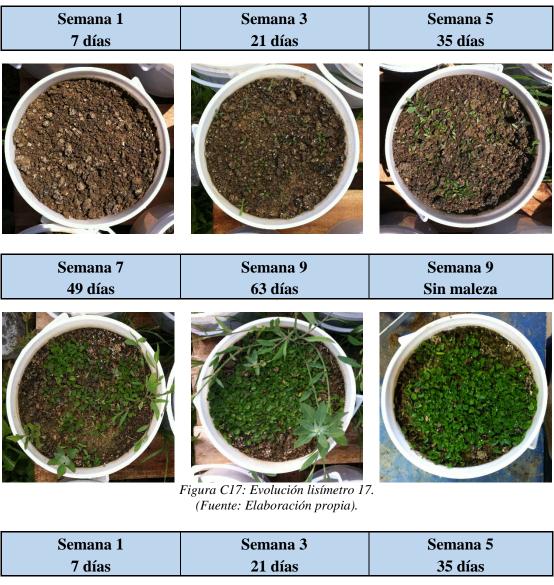
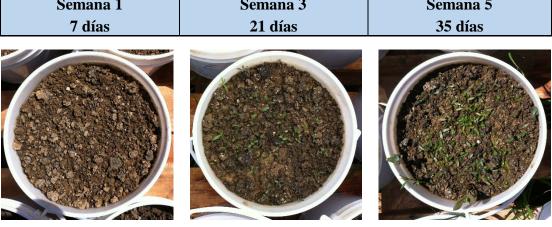




Figura C16: Evolución lisímetro 16. (Fuente: Elaboración propia).

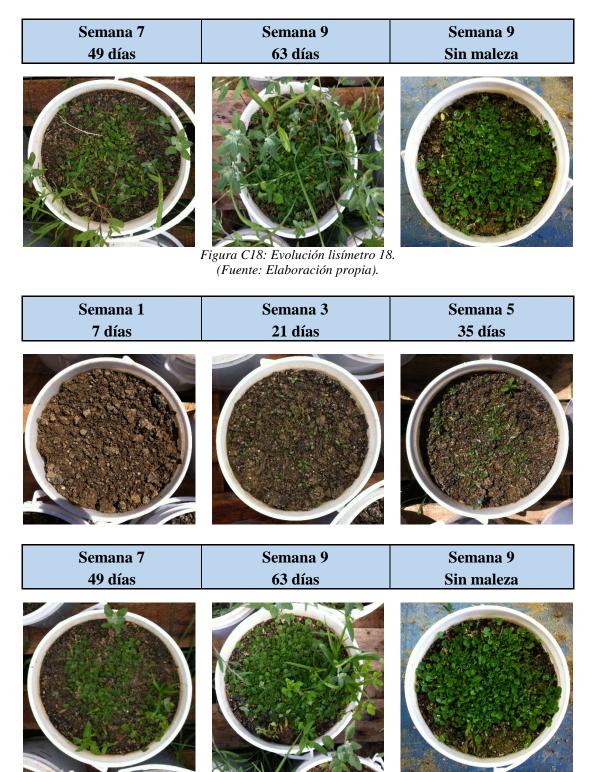
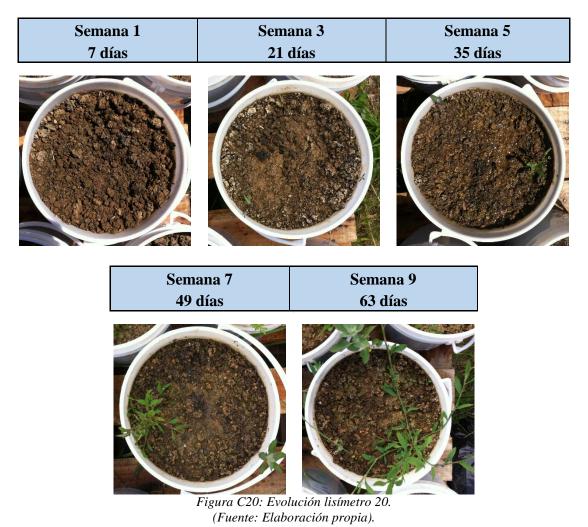
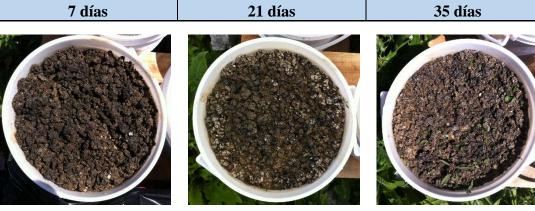




Figura C19: Evolución lisímetro 19. (Fuente: Elaboración propia).

Semana 1 Semana 3 Semana 5

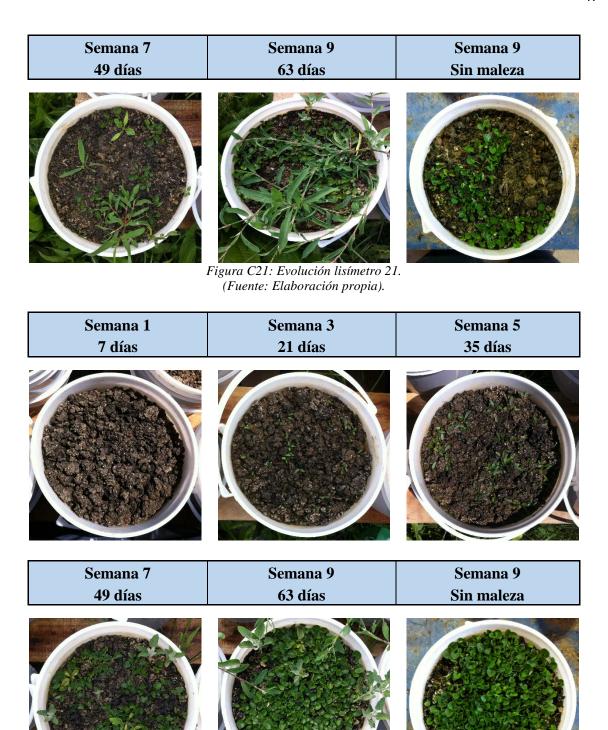
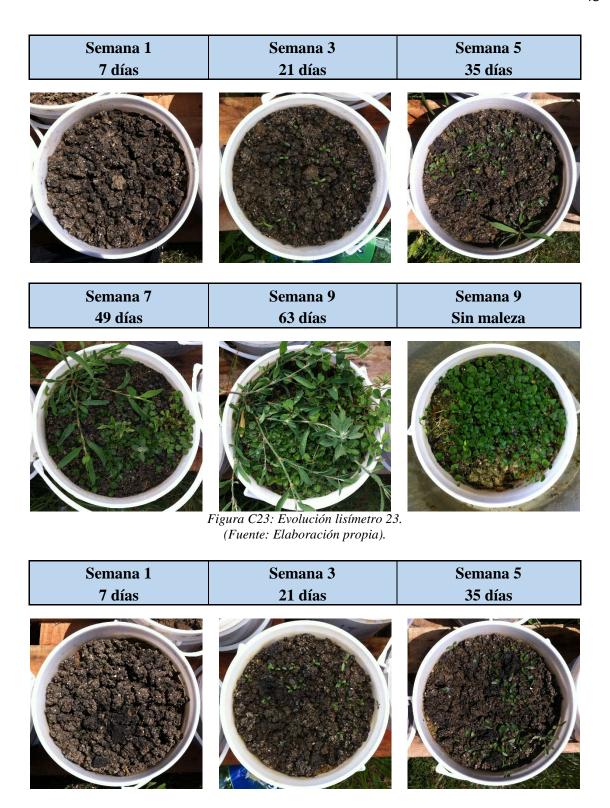



Figura C22: Evolución lisímetro 22. (Fuente: Elaboración propia).

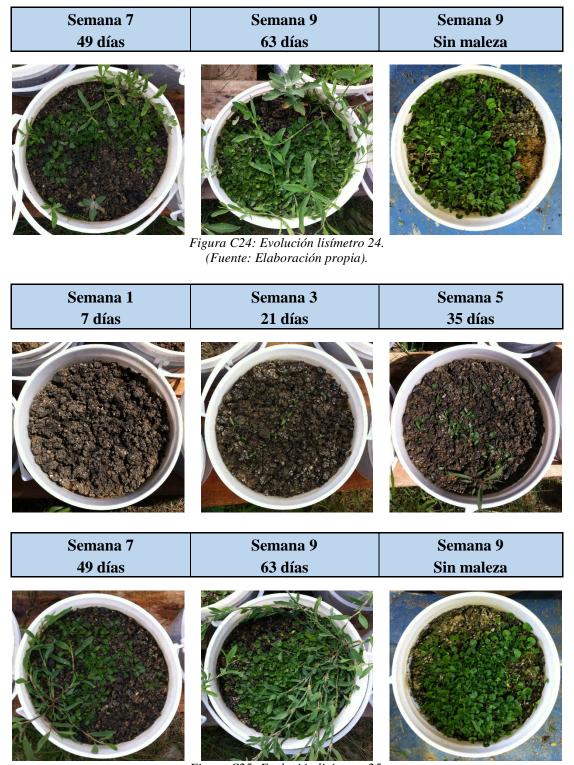


Figura C25: Evolución lisímetro 25. (Fuente: Elaboración propia).

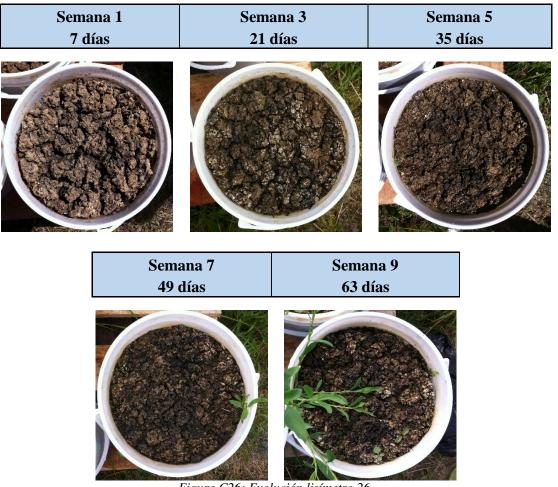


Figura C26: Evolución lisímetro 26. (Fuente: Elaboración propia).

C.2. Porcentajes de cobertura

Luego de haber analizado cada fotografía, se tabulo cada porcentaje de cobertura, los cuales se presentan a continuación.

Concentración	Lisímetro	16-oct	23-oct	30-oct	06-nov	13-nov
	1	0%	0.1%	1.4%	1.6%	3.1%
	2	0%	0.3%	1.6%	4.3%	6.2%
00/ D: 1:1	3	0%	0.7%	1.7%	3.5%	6.5%
0% Biosolidos	4	0%	0.7%	1.7%	2.7%	6.1%
	5	0%	0.6%	1.3%	3.7%	4.5%
	6	0%	0.0%	0.1%	0.6%	2.0%
	7	0%	0.1%	0.6%	2.8%	6.7%
200/ Diagolidas	8	0%	0.3%	1.2%	5.4%	7.8%
30% Biosolidos	9	0%	0.4%	1.2%	4.4%	6.4%
	10	0%	0.0%	0.3%	0.6%	5.6%
	11	0%	0.5%	0.9%	7.1%	9.6%
	12	0%	0.7%	1.1%	7.0%	12.6%
50% Biosolidos	13	0%	0.5%	0.6%	7.2%	10.5%
50% DIOSOIIUOS	14	0%	0.2%	1.1%	5.3%	8.5%
	15	0%	0.5%	1.5%	6.2%	12.3%
	16	0%	0.0%	0.2%	0.5%	3.1%
	17	0%	0.4%	1.8%	4.8%	8.8%
70% Biosolidos	18	0%	0.9%	2.1%	6.1%	8.2%
70% DIOSOIIUOS	19	0%	0.8%	2.2%	5.4%	9.5%
	20	0%	0.0%	1.2%	2.3%	4.5%
90% Biosolidos	21	0%	0.0%	0.2%	0.8%	1.4%
	22	0%	0.6%	0.9%	1.4%	3.7%
	23	0%	0.4%	0.6%	1.6%	3.4%
	24	0%	0.3%	1.2%	1.7%	3.5%
	25	0%	0.4%	0.8%	1.5%	3.5%
	26	0%	0.0%	0.0%	0.4%	1.0%

Tabla C2: Porcentajes de cobertura durante cinco semanas iniciales. (Fuente: Elaboración propia).

Concentración	Lisímetro	20-nov	27-nov	04-dic	10-dic	12-dic
00/ Pi Vi	1	5.2%	7.8%	9.8%	14.3%	15.1%
	2	7.1%	7.9%	8.2%	13.6%	14.5%
	3	7.6%	8.5%	12.4%	17.8%	19.8%
0% Biosolidos	4	8.9%	8.2%	8.0%	15.0%	16.8%
	5	5.8%	6.9%	7.2%	10.2%	12.3%
	6	1.0%	1.6%	3.6%	7.1%	
	7	10.5%	15.8%	23.4%	28.0%	30.5%
200/ Di111	8	9.8%	12.4%	17.4%	22.2%	28.6%
30% Biosolidos	9	7.9%	18.3%	21.8%	25.6%	27.5%
	10	7.7%	16.3%	35.4%	21.8%	
	11	12.0%	19.2%	29.8%	46.1%	52.1%
	12	18.6%	27.4%	34.1%	53.4%	56.6%
500/ Dissolides	13	14.5%	22.5%	31.4%	40.3%	45.8%
50% Biosolidos	14	11.9%	21.3%	33.1%	44.9%	49.6%
	15	18.1%	26.5%	35.2%	50.3%	53.2%
	16	8.1%	13.5%	17.0%	20.2%	
	17	15.4%	28.6%	45.9%	65.8%	67.8%
70% Biosolidos	18	15.6%	24.9%	42.9%	61.3%	64.2%
70 % Diosonuos	19	18.6%	26.5%	51.3%	72.6%	75.5%
	20	11.5%	12.4%	14.0%	12.6%	
	21	13.9%	29.6%	51.3%	77.8%	79.8%
	22	14.8%	35.6%	54.9%	88.1%	90.1%
90% Biosolidos	23	15.1%	30.5%	49.8%	81.6%	84.6%
50 % DIUSUIIQUS	24	15.5%	33.5%	52.4%	84.6%	87.4%
	25	14.0%	29.7%	48.1%	79.4%	83.1%
	26	2.1%	4.5%	7.8%	15.3%	

Tabla C3: Porcentajes de cobertura durante cinco semanas finales. (Fuente: Elaboración propia).

ANEXO D: PESO LISIMETROS

Se llevó acabo el registro de los pesos durante los 63 días que duró la experiencia, para ello se utilizó una balanza de alta precisión, de 30 kg \pm 1 gr. Además se muestra la cantidad de agua regada por dia.

Tabla D1: Riego diario. (Fuente: Elaboración propia).

Dia	Riego (ml)			
1	200			
2	35			
3	250			
4	0			
5 6	300			
	200			
7	0			
8	100			
9	0			
10	100			
11	100			
12	180			
13	60			
14	180			
15	100			
16	200			
17	100			
18	0			
19	120			
20	0			
21	0			
22	50			
23	150			
24	120			
25	0			
26	200			
27	100			
28	150			
29	100			
30	140			
31	100			
32	120			

33 100 34 110 35 150 36 120 37 150 38 120 39 120 40 150 41 90 42 120 43 200 44 120 45 120 46 90 47 150 48 110 49 110 50 120 51 130 52 120 53 0 54 200 55 100 56 150 57 200 58 100 59 0 60 120 61 0 62 250 63 100	Dia	Riego (ml)		
35 150 36 120 37 150 38 120 39 120 40 150 41 90 42 120 43 200 44 120 45 120 46 90 47 150 48 110 49 110 50 120 51 130 52 120 53 0 54 200 55 100 56 150 57 200 58 100 59 0 60 120 61 0 62 250	33	100		
36 120 37 150 38 120 39 120 40 150 41 90 42 120 43 200 44 120 45 120 46 90 47 150 48 110 49 110 50 120 51 130 52 120 53 0 54 200 55 100 56 150 57 200 58 100 59 0 60 120 61 0 62 250	34	110		
37 150 38 120 39 120 40 150 41 90 42 120 43 200 44 120 45 120 46 90 47 150 48 110 49 110 50 120 51 130 52 120 53 0 54 200 55 100 56 150 57 200 58 100 59 0 60 120 61 0 62 250	35	150		
38 120 39 120 40 150 41 90 42 120 43 200 44 120 45 120 46 90 47 150 48 110 50 120 51 130 52 120 53 0 54 200 55 100 56 150 57 200 58 100 59 0 60 120 61 0 62 250	36	120		
39 120 40 150 41 90 42 120 43 200 44 120 45 120 46 90 47 150 48 110 49 110 50 120 51 130 52 120 53 0 54 200 55 100 56 150 57 200 58 100 59 0 60 120 61 0 62 250	37	150		
40 150 41 90 42 120 43 200 44 120 45 120 46 90 47 150 48 110 50 120 51 130 52 120 53 0 54 200 55 100 56 150 57 200 58 100 59 0 60 120 61 0 62 250	38	120		
41 90 42 120 43 200 44 120 45 120 46 90 47 150 48 110 49 110 50 120 51 130 52 120 53 0 54 200 55 100 56 150 57 200 58 100 59 0 60 120 61 0 62 250	39	120		
42 120 43 200 44 120 45 120 46 90 47 150 48 110 49 110 50 120 51 130 52 120 53 0 54 200 55 100 56 150 57 200 58 100 59 0 60 120 61 0 62 250	40	150		
43 200 44 120 45 120 46 90 47 150 48 110 49 110 50 120 51 130 52 120 53 0 54 200 55 100 56 150 57 200 58 100 59 0 60 120 61 0 62 250	41			
44 120 45 120 46 90 47 150 48 110 49 110 50 120 51 130 52 120 53 0 54 200 55 100 56 150 57 200 58 100 59 0 60 120 61 0 62 250	42	120		
45 120 46 90 47 150 48 110 49 110 50 120 51 130 52 120 53 0 54 200 55 100 56 150 57 200 58 100 59 0 60 120 61 0 62 250	43	200		
46 90 47 150 48 110 49 110 50 120 51 130 52 120 53 0 54 200 55 100 56 150 57 200 58 100 59 0 60 120 61 0 62 250	44	120		
47 150 48 110 49 110 50 120 51 130 52 120 53 0 54 200 55 100 56 150 57 200 58 100 59 0 60 120 61 0 62 250	45	120		
48 110 49 110 50 120 51 130 52 120 53 0 54 200 55 100 56 150 57 200 58 100 59 0 60 120 61 0 62 250	46	90		
49 110 50 120 51 130 52 120 53 0 54 200 55 100 56 150 57 200 58 100 59 0 60 120 61 0 62 250	47			
50 120 51 130 52 120 53 0 54 200 55 100 56 150 57 200 58 100 59 0 60 120 61 0 62 250	48	110		
51 130 52 120 53 0 54 200 55 100 56 150 57 200 58 100 59 0 60 120 61 0 62 250	49			
52 120 53 0 54 200 55 100 56 150 57 200 58 100 59 0 60 120 61 0 62 250	50	120		
53 0 54 200 55 100 56 150 57 200 58 100 59 0 60 120 61 0 62 250	51	130		
54 200 55 100 56 150 57 200 58 100 59 0 60 120 61 0 62 250	52	120		
55 100 56 150 57 200 58 100 59 0 60 120 61 0 62 250	53	0		
56 150 57 200 58 100 59 0 60 120 61 0 62 250	54	200		
57 200 58 100 59 0 60 120 61 0 62 250	55	100		
58 100 59 0 60 120 61 0 62 250	56	150		
59 0 60 120 61 0 62 250	57	200		
60 120 61 0 62 250	58	100		
61 0 62 250	59	0		
62 250	60	120		
	61	0		
63 100	62	250		
0.5	63	100		

A partir de los riegos mostrados anteriormente se obtuvieron las mediciones de los pesos, los que se muestran a continuación.

Tabla D2: Variación de peso primea semana. (Fuente: Elaboración propia).

Concentración	Lisímetro	09-oct	10-oct	14-oct
	1	6080	6141	6430
	2	6080	6120	6369
00/11/21/1	3	6080	6080	6392
0% biosólidos	4	6080	6141	6473
	5	6080	6177	6379
	6		6080	6160
	7	6080	5996	6306
30% biosólidos	8	6080	6016	6317
30 % blosofidos	9	6080	5985	6327
	10		6080	6128
	11	6080	5980	6424
	12	6080	5987	6458
50% biosólidos	13	6080	5996	6442
50 % biosolidos	14	6080	5998	6431
	15	6080	5982	6460
	16		6080	6169
	17	6080	5977	6473
70% biosólidos	18	6080	5966	6495
70 /6 biosolidos	19	6080	5979	6496
	20		6080	6306
	21	6080	5955	6804
	22	6080	5960	6645
90% biosólidos	23	6080	5958	6581
90 % DIOSUHUUS	24	6080	5959	6470
	25	6080	5972	6470
	26		6080	6157

Tabla D2: Variación de peso segunda y tercera semana. (Fuente: Elaboración propia).

Concentración	Lisímetro	16-oct	21-oct	24-oct	27-oct
0% biosólidos	1	6610	6579	6628	6536
	2	6557	6519	6559	6483
	3	6563	6523	6560	6479
U% DIOSOHOOS	4	6640	6653	6704	6611
	5	6526	6524	6602	6520
	6	6591	6514	6520	6387
	7	6487	6587	6635	6562
30% biosólidos	8	6484	6603	6674	6609
3076 DIOSOHUUS	9	6496	6645	6733	6664
	10	6593	6703	6734	6661
	11	6597	6779	6885	6849
	12	6634	6822	6946	6903
50% biosólidos	13	6626	6834	6941	6832
50 /6 DIOSUITUOS	14	6598	6791	6901	6880
	15	6627	6820	6891	6858
	16	6618	6793	6828	6660
	17	6642	6850	7029	6894
70% biosólidos	18	6664	6920	7076	6916
70 /0 DIOSUITUOS	19	6662	6898	7050	6924
	20	6756	6949	7019	6882
	21	6977	6942	6861	6735
90% biosólidos	22	6820	6897	6834	6734
	23	6754	6908	6866	6751
	24	6632	6867	6855	6754
	25	6628	6851	6845	6721
	26	6604	6753	6719	6618

Tabla D3: Variación de peso cuarta y quinta semana. (Fuente: Elaboración propia).

Concentración	Lisímetro	30-oct	04-nov	07-nov	10-nov
00/1: /!:1	1	6642	6548	6603	6571
	2	6573	6508	6584	6551
	3	6567	6465	6509	6461
0% biosólidos	4	6694	6616	6674	6635
	5	6598	6543	6592	6560
	6	6422	6223	6232	6164
	7	6640	6548	6602	6589
200/ biogálidos	8	6694	6618	6684	6645
30% biosólidos	9	6745	6700	6767	6747
	10	6695	6517	6608	6551
	11	6964	6819	6730	6613
	12	7034	6905	6896	6828
50% biosólidos	13	6923	6797	6786	6723
50% biosolidos	14	6988	6933	6961	6891
	15	6962	6875	6870	6810
	16	6707	6593	6606	6553
	17	6970	6848	6859	6818
70% biosólidos	18	6980	6842	6838	6780
70% DIOSOIIGOS	19	6995	6860	6862	6796
	20	6936	6854	6856	6823
	21	6822	6726	6752	6716
90% biosólidos	22	6829	6749	6772	6742
	23	6843	6735	6737	6693
	24	6840	6750	6752	6710
	25	6795	6694	6706	6673
	26	6691	6592	6584	6554

Tabla D2: Variación de peso sexta y séptima semana. (Fuente: Elaboración propia).

Concentración	Lisímetro	13-nov	19-nov	21-nov	25-nov
0% biosólidos	1	6449	6460	6490	6490
	2	6480	6416	6459	6462
	3	6452	6334	6364	6365
	4	6607	6502	6533	6522
	5	6552	6387	6421	6404
	6	6106	6033	6072	6080
	7	6531	6519	6555	6513
30% biosólidos	8	6573	6503	6475	6269
3076 DIOSOHUUS	9	6711	6700	6709	6567
	10	6531	6461	6478	6447
	11	6621	6645	6655	6638
	12	6813	6803	6803	6800
50% biosólidos	13	6709	6709	6705	6710
30 /0 DIOSUITUOS	14	6869	6857	6878	6869
	15	6778	6719	6725	6700
	16	6509	6494	6523	6533
	17	6813	6796	6803	6804
70% biosólidos	18	6772	6772	6789	6790
70 /0 DIOSUITUOS	19	6792	6788	6781	6803
	20	6810	6791	6798	6817
	21	6714	6707	6717	6721
90% biosólidos	22	6735	6723	6746	6761
	23	6690	6683	6684	6700
	24	6696	6681	6704	6715
	25	6659	6646	6655	6672
	26	6530	6513	6522	6536

Tabla D2: Variación de peso octava y novena semana. (Fuente: Elaboración propia).

Concentración	Lisímetro	28-nov	02-dic	05-dic	11-dic
00/1: /!:1	1	6420	6405	6399	6273
	2	6388	6388	6386	6279
	3	6318	6304	6289	6191
0% biosólidos	4	6462	6458	6452	6346
	5	6346	6340	6337	6237
	6	6017	6036	6056	5969
	7	6351	6122	5985	5869
30% biosólidos	8	6070	5994	5937	5883
50% biosolidos	9	6343	6232	5981	5898
	10	6333	6125	5934	5703
	11	6625	6523	6468	6173
	12	6810	6764	6635	6183
50% biosólidos	13	6720	6638	6521	6121
5076 DIOSOHUUS	14	6877	6814	6722	6380
	15	6614	6688	6710	5800
	16	6514	6480	6440	6185
	17	6782	6756	6677	6321
70% biosólidos	18	6792	6649	6593	6024
7076 DIOSOIIUOS	19	6814	6785	6736	6483
	20	6793	6737	6706	6484
	21	6716	6661	6592	6211
90% biosólidos	22	6778	6768	6756	6696
	23	6702	6693	6391	5805
	24	6732	6664	6614	6177
	25	6677	6505	6490	5932
	26	6527	6523	6505	6322

ANEXO E: TAMAÑO MAXIMO DE HOJA

El tamaño máximo de hoja se pudo medir desde la quinta semana, debido a que antes solo existía el brote guía. A continuación se muestran todos los datos obtenidos.

Tabla E1: variación del tamaño máximo de hoja. (Fuente: Elaboración propia).

Concentración	Lisímetro	10-nov	17-nov	24-nov	01-dic	09-dic
	1	0.5	0.5	0.6	0.7	0.7
	2	0.6	0.6	0.7	0.7	0.8
0%	3	0.7	0.8	0.8	0.8	0.9
biosólidos	4	0.4	0.5	0.6	0.7	0.7
	5	0.5	0.6	0.7	0.7	0.8
	6					
	7	0.7	0.8	0.8	0.9	0.9
30%	8	0.7	0.7	0.7	0.8	0.9
biosólidos	9	0.8	0.9	0.9	0.9	1
	10					
	11	1	1.1	1.1	1.2	1.3
	12	1	1	1.1	1.1	1.2
50%	13	1.1	1.1	1.1	1.2	1.2
biosólidos	14	0.8	0.9	1	1.1	1.1
	15	0.9	0.9	1	1	1.1
	16					
	17	1.2	1.2	1.3	1.3	1.4
70%	18	1	1.1	1.2	1.4	1.4
biosólidos	19	0.9	1	1.1	1.3	1.3
	20					
	21	0.8	1	1.2	1.5	1.7
	22	1	1.2	1.3	1.6	1.8
90% biosólidos	23	1.3	1.4	1.4	1.5	1.5
	24	1.2	1.3	1.3	1.6	1.9
	25	1.1	1.2	1.2	1.4	1.7
	26					

ANEXO F: BIOMASA GENERADA

En este anexo se muestra la cantidad de biomasa seca presente en cada lisímetro, para ello se tuvo que retirar la biomasa presente en cada lisímetro, luego tomar estas biomasas y ubicarlas dentro de un horno de secado a una temperatura no más de 70°C, ya que existe el riesgo de que se quemen.

Tabla F1: Cantidad de biomasa generada. (Fuente: Elaboración propia).

a	,	Biomasa Seca			
Concentración	Lisímetro	Maleza	Dichondra		
	1	1.1	4		
0% Biosolidos	2	1.4	4.5		
	3	0.9	1.6		
	4	1.7	4.5		
	5	1.1	3.1		
	6	0.5			
	7	34	7.3		
30% Biosolidos	8	19.6	4.9		
50% Diosonaos	9	18.9	10.4		
	10	87.7			
	11	12.1	12.4		
50% Biosolidos	12	9.6	19.3		
	13	20	19.6		
	14	9.2	16.2		
	15	34.4	15.3		
	16	9.9			
70% Biosolidos	17	4.3	31.4		
	18	9.4	51.7		
	19	9.6	100.6		
	20	12.7			
	21	12.3	45.7		
90% Biosolidos	22	4	121.8		
	23	18.3	124		
	24	23.7	104.5		
	25	4.7	141.7		
	26	45.6			

ANEXO G: ANÁLISIS ESTADÍSTICO

Dentro de todos los análisis realizados se eliminaron los lisímetros que no presentaban siembra, con el fin de obtener una menor cantidad de error. La tabla G1 muestra las variables involucradas en todos los análisis.

Tabla G1: Variables de la experiencia. (Fuente: Elaboración propia).

	Cobertura D Biomasa							
Lisímetro	Concentración biosólidos (%)	final sin maleza (%)	Peso promedio (gr)	Tamaño final de hoja (cm)	Biomasa seca generada (gr)			
1	0%	15.10%	6460.74	0.7	4.0			
2	0%	14.50%	6429.53	0.8	4.5			
3	0%	19.80%	6384.00	0.9	1.6			
4	0%	16.80%	6515.95	0.7	4.5			
5	0%	12.30%	6427.63	0.8	3.1			
7	30%	30.50%	6393.53	0.9	7.3			
8	30%	28.60%	6375.16	0.9	4.9			
9	30%	27.50%	6475.26	1.0	10.4			
11	50%	52.10%	6582.53	1.3	12.4			
12	50%	56.60%	6689.68	1.2	19.3			
13	50%	45.80%	6621.74	1.2	19.6			
14	50%	49.60%	6722.00	1.1	16.2			
15	50%	53.20%	6629.95	1.1	15.3			
17	70%	67.80%	6694.32	1.4	31.4			
18	70%	64.20%	6670.42	1.4	51.7			
19	70%	75.50%	6714.95	1.3	100.6			
21	90%	79.80%	6653.11	1.7	45.7			
22	90%	90.10%	6685.53	1.8	121.8			
23	90%	84.60%	6592.32	1.5	124.0			
24	90%	87.40%	6613.26	1.9	104.5			
25	90%	83.10%	6561.63	1.7	141.7			

G.1. Regresión lineal

La regresión lineal se realizó a través de gráficos en Excel, correlacionando las variables de la tabla G1. Además se tuvo como resultado correlaciones aceptables, lo que ayuda a comprender la influencia de los biosólidos como fertilizantes. Por otro lado, Se compararon las variables dependientes, como cobertura vegetal, tamaño máximo de la hoja y biomasa generada, con las variables independientes, como el peso de los lisímetros y el porcentaje de biosólidos presentes en cada lisímetro.

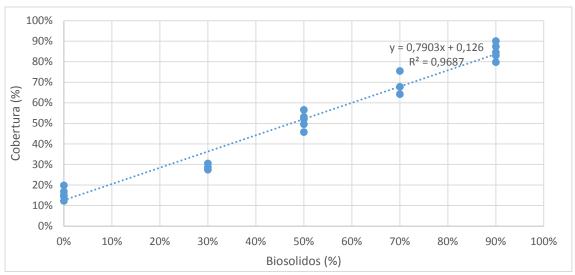


Figura G1: Cobertura (%) v/s Porcentaje de biosólidos (%). (Fuente: Elaboración propia).

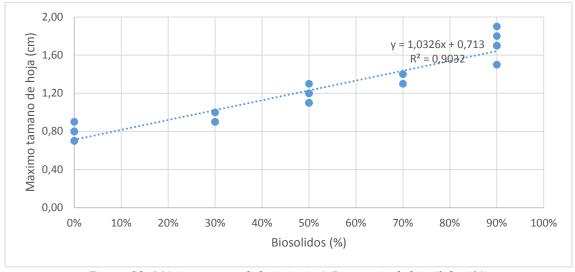


Figura G2: Máximo tamaño de hoja (cm) v/s Porcentaje de biosólidos (%). (Fuente: Elaboración propia).

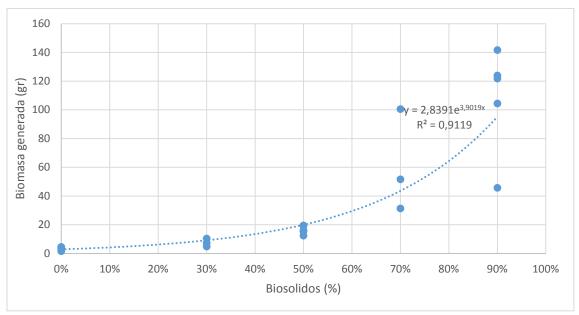


Figura G3: Biomasa generada (gr) v/s Porcentaje de biosólidos (%). (Fuente: Elaboración propia).

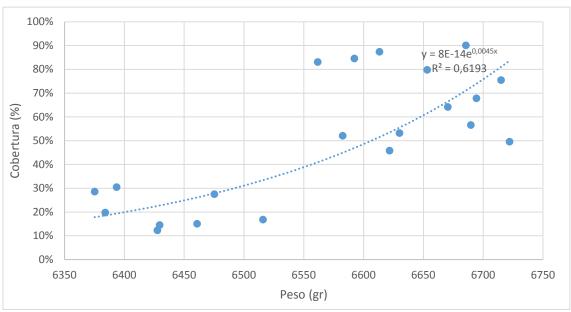


Figura G4: Máxima cobertura (%) v/s Peso de cada lisímetro (gr). (Fuente: Elaboración propia).

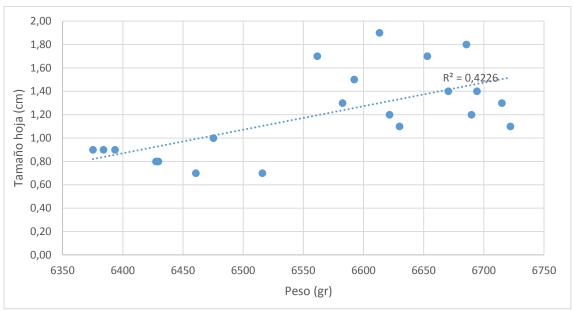


Figura G5: Máximo tamaño de hoja (cm) v/s Peso de cada lisímetro (gr). (Fuente: Elaboración propia).

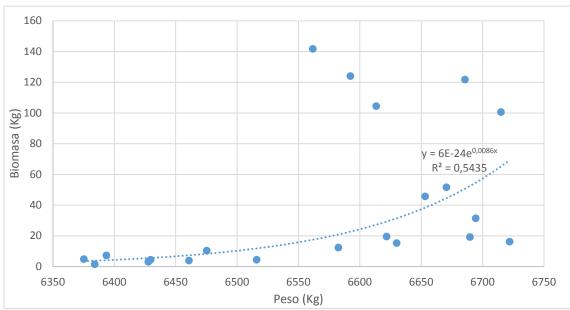


Figura G6: Biomasa generada (Kg) v/s Peso de cada lisímetro (Kg). (Fuente: Elaboración propia).

G.2. Correlación de Spearman

La correlación de Spearman sirve para observar la relación que tienen estas distintas variables. Para ello se utilizó el programa llamado InfoStat. A continuación se muestra los resultados obtenidos al correlacionar todas las variables de la tabla G1.

Coeficientes de correlación										
Correlación de Spearman: Coeficientes\probabilidades										
	Concentración biosólidos	Cobertura final	Peso promedio	Tamaño d	le brote Final	Biomasa	generada			
Concentración biosólidos	1,00	0,00	1,5E-03		0,00		0,00			
Cobertura final	0,98	1,00	3,9E-03		1,1E-11		1,0E-10			
Peso promedio	0,65	0,65	1,00		3,8E-03		1,1E-03			
Tamaño de brote Final	0,97	0,96	0,60		1,00		2,5E-09			
Biomasa generada	0,97	0,95	0,66		0,92		1,00			

Figura G7: Coeficientes de Correlación de Spearman. (Fuente: Elaboración propia).

En la figura G7 se puede apreciar claramente que entre las variables dependientes existe una gran correlación. Es por ello que se realizaron gráficos entre cada variable, el cual se muestra a continuación.

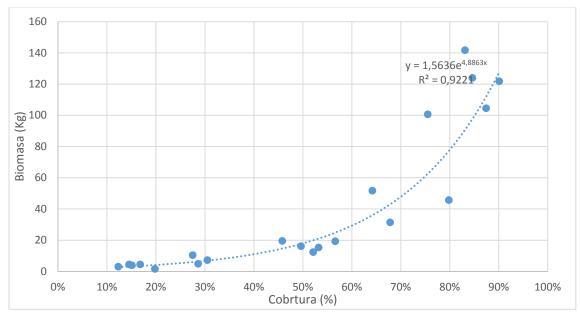


Figura G8: Máximo tamaño de hoja (cm) v/s Máxima cobertura (%). (Fuente: Elaboración propia).

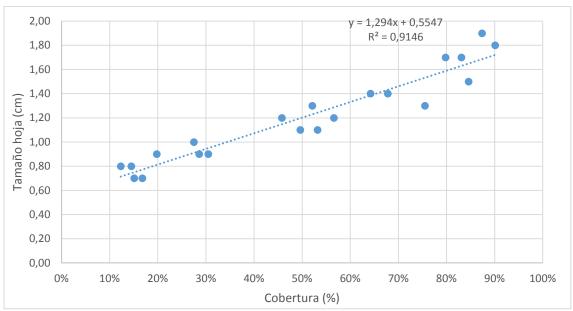


Figura G9: Máximo tamaño de hoja (cm) v/s Máxima cobertura (%). (Fuente: Elaboración propia).

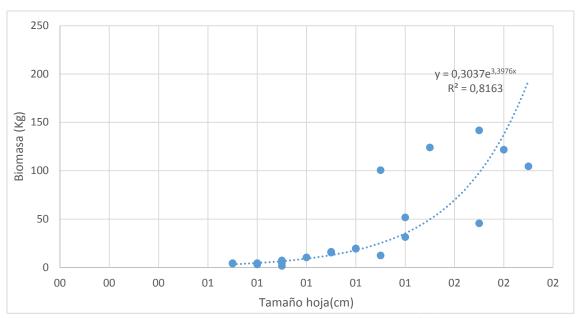


Figura G10: Biomasa generada (Kg) v/s Máximo tamaño de hoja (%). (Fuente: Elaboración propia).